Dispersion of graphene oxide–silica nanohybrids in alkaline environment for improving ordinary Portland cement composites

2020 ◽  
Vol 106 ◽  
pp. 103488 ◽  
Author(s):  
Junlin Lin ◽  
Ezzatollah Shamsaei ◽  
Felipe Basquiroto de Souza ◽  
Kwesi Sagoe-Crentsil ◽  
Wen Hui Duan
2021 ◽  
Vol 305 ◽  
pp. 124815
Author(s):  
Wei Liu ◽  
Lehui Zhang ◽  
Yu Cao ◽  
Jianhong Wang ◽  
Peikang Bai ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


RSC Advances ◽  
2018 ◽  
Vol 8 (49) ◽  
pp. 27602-27609
Author(s):  
Zhenzhou Yang ◽  
Ji Ru ◽  
Lili Liu ◽  
Xidong Wang ◽  
Zuotai Zhang

In order to evaluate the long-term environmental impact of Eco-Ordinary Portland Cement (EOPC) prepared by hazardous wastes, long-term leaching tests were conducted on the EOPC composites under deionized and saline water conditions.


Holzforschung ◽  
1999 ◽  
Vol 53 (1) ◽  
pp. 104-108 ◽  
Author(s):  
N. Sauvat ◽  
R. Sell ◽  
E. Mougel ◽  
A. Zoulalian

Summary As an essential preliminary to understand the hydration of wood-cement composites, the effects of some additives on the delayed setting due to wood of an Ordinary Portland Cement have been investigated by isothermal calorimetry. With the addition of calcium chloride and activated charcoal, an increase of 50% of the total enthalpy is observed in wood-cement composites hydration, because calcium chloride mostly influences aluminate phases and activated charcoal silicate phases.


2007 ◽  
Vol 61 (30) ◽  
pp. 5206-5208 ◽  
Author(s):  
A. Chaipanich ◽  
N. Jaitanong ◽  
T. Tunkasiri

Sign in / Sign up

Export Citation Format

Share Document