Investigation of strong asymmetric pulsation patterns in a stirred-pulsed extraction measurement cell

Author(s):  
Piriyanth Sakthithasan ◽  
Nils Gerdes ◽  
Maximilian Venhuis ◽  
Prof. Dr.-Ing. Norbert Kockmann
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4166
Author(s):  
Román Fernández ◽  
María Calero ◽  
Yolanda Jiménez ◽  
Antonio Arnau

Monolithic quartz crystal microbalance (MQCM) has recently emerged as a very promising technology suitable for biosensing applications. These devices consist of an array of miniaturized QCM sensors integrated within the same quartz substrate capable of detecting multiple target analytes simultaneously. Their relevant benefits include high throughput, low cost per sensor unit, low sample/reagent consumption and fast sensing response. Despite the great potential of MQCM, unwanted environmental factors (e.g., temperature, humidity, vibrations, or pressure) and perturbations intrinsic to the sensor setup (e.g., mechanical stress exerted by the measurement cell or electronic noise of the characterization system) can affect sensor stability, masking the signal of interest and degrading the limit of detection (LoD). Here, we present a method based on the discrete wavelet transform (DWT) to improve the stability of the resonance frequency and dissipation signals in real time. The method takes advantage of the similarity among the noise patterns of the resonators integrated in an MQCM device to mitigate disturbing factors that impact on sensor response. Performance of the method is validated by studying the adsorption of proteins (neutravidin and biotinylated albumin) under external controlled factors (temperature and pressure/flow rate) that simulate unwanted disturbances.


2018 ◽  
Vol 9 (4) ◽  
pp. 314-324
Author(s):  
A. A. Barinov ◽  
V. G. Glavny ◽  
S. M. Dmitriev ◽  
M. A. Legchanov ◽  
A. V. Ryazanov ◽  
...  

The well-known method of spatial conductometry is widely used for hydrodynamical investigations in the frame of validation benchmarks. The aim of the work was to develop the method of representativeness substantiation for use of the conductometric sensors in single-phase applications.The paper presents aspects of wire-mesh sensors (WMS) applications in non-uniform conductivity fields. The equivalent electrical circuits for the measurement cell and WMS are proposed and investigated. The methods of translation from measured conductance to conductivity of the water are discussed. Decomposition of the uncertainty sources and their propagation through measurements are investigated.To obtain the «cross-talk» effect of the measurements the fi model of WMS fl domain was created. The results of calculations showed the dependence of the measurement results on the conductivity contrast in the cells as well as on the size of the contrast domain. The proposed method of the measurement uncertainty estimate was applied to the real WMS and it’s measurement system. The obtained results are topical for validation tests with the use of tracer methods and WMS.


2012 ◽  
Vol 166-167 ◽  
pp. 829-832 ◽  
Author(s):  
Karine Bonnot ◽  
Benny Siegert ◽  
Thomas Cottineau ◽  
Valérie Keller ◽  
Denis Spitzer

1978 ◽  
Vol 70 (6) ◽  
pp. 341-348 ◽  
Author(s):  
J. Donald Johnson ◽  
Joseph W. Edwards ◽  
Frederick Keeslar

Sign in / Sign up

Export Citation Format

Share Document