Aqueous electrophoretic deposition of SiC using asymmetric AC electric fields

2014 ◽  
Vol 40 (8) ◽  
pp. 12609-12612 ◽  
Author(s):  
Kati Raju ◽  
Hyun-Woo Yu ◽  
Dang-Hyok Yoon
2009 ◽  
Vol 412 ◽  
pp. 83-86 ◽  
Author(s):  
Amir Reza Gardeshzadeh ◽  
Babak Raissi ◽  
Ehsan Marzbanrad

In this paper, electrophoretic deposition of multiwall carbon nanotubes (MWNTs) using low frequency (0.01-1000 Hz) AC electric fields, is reported. The effect of depositing parameters such as frequency and waveform on deposit yield is investigated. Results show that the deposit yield decreases with frequency. The rectangular waveform yields more deposit yield than sinusoidal and triangular waveforms. The deposition pattern is also different in AC and DC electric fields. This technique may be used for deposition of MWNTs thick films.


2008 ◽  
Vol 62 (10-11) ◽  
pp. 1697-1699 ◽  
Author(s):  
Amir Reza Gardeshzadeh ◽  
Babak Raissi ◽  
Ehsan Marzbanrad

2009 ◽  
Vol 11 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Bram Neirinck ◽  
Jan Fransaer ◽  
Omer Van der Biest ◽  
Jef Vleugels

Author(s):  
Xinghua Su ◽  
Mengying Fu ◽  
Gai An ◽  
Zhihua Jiao ◽  
Qiang Tian ◽  
...  

2004 ◽  
Author(s):  
M. Sigurdson ◽  
C. Meinhart ◽  
D. Wang

We develop here tools for speeding up binding in a biosensor device through augmenting diffusive transport, applicable to immunoassays as well as DNA hybridization, and to a variety of formats, from microfluidic to microarray. AC electric fields generate the fluid motion through the well documented but unexploited phenomenon, Electrothermal Flow, where the circulating flow redirects or stirs the fluid, providing more binding opportunities between suspended and wall-immobilized molecules. Numerical simulations predict a factor of up to 8 increase in binding rate for an immunoassay under reasonable conditions. Preliminary experiments show qualitatively higher binding after 15 minutes. In certain applications, dielectrophoretic capture of passing molecules, when combined with electrothermal flow, can increase local analyte concentration and further enhance binding.


2007 ◽  
Vol 29-30 ◽  
pp. 223-226
Author(s):  
Tohru Suzuki ◽  
Tetsuo Uchikoshi ◽  
Koji Morita ◽  
Keijiro Hiraga ◽  
Yoshio Sakka

We have reported that development of texture can be controlled by colloidal processing in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina, titania and so on. We demonstrate in this study that alumina/alumina laminar composites with different crystalline-oriented layer are produced by electrophoretic deposition (EPD) in a strong magnetic field. This composite was fabricated by alternately changing the angle between the directions of the magnetic and electric fields layer by layer during EPD in 12T. The grains in alternate layers are aligned differently.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Alicia Boymelgreen ◽  
Gilad Yossifon ◽  
Sinwook Park ◽  
Touvia Miloh

Sign in / Sign up

Export Citation Format

Share Document