scholarly journals Enhancing copper infiltration into alumina using spark plasma sintering to achieve high performance Al2O3/Cu composites

2018 ◽  
Vol 44 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Yingge Shi ◽  
Wenge Chen ◽  
Longlong Dong ◽  
Hanyan Li ◽  
Yongqing Fu
Nanoscale ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 2857-2866 ◽  
Author(s):  
Matilde Saura-Múzquiz ◽  
Cecilia Granados-Miralles ◽  
Marian Stingaciu ◽  
Espen Drath Bøjesen ◽  
Qiang Li ◽  
...  

High-performance hexaferrite magnets of aligned single-domain nanoplatelets are obtained by supercritical synthesis and compaction through Spark Plasma Sintering.


2006 ◽  
Vol 88 (9) ◽  
pp. 092104 ◽  
Author(s):  
Heng Wang ◽  
Jing-Feng Li ◽  
Ce-Wen Nan ◽  
Min Zhou ◽  
Weishu Liu ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1355
Author(s):  
Zhiyong Xue ◽  
Xiuzhu Han ◽  
Wenbo Luo ◽  
Zhiyong Zhou ◽  
Zhizhong Cheng ◽  
...  

The synergic strengthening of multiple phases is an essential way to achieve high-performance Mg alloys. Herein, Mg-Gd-Zn alloy containing four phases was prepared by rapid solidification (RS) ribbons and spark plasma sintering (SPS). The microstructure of the alloy consisted of α-Mg, nanosized β1 phase particles, lamellar long period stacking ordered (LPSO) phase, and β′ phase precipitates. The microstructural evolution was also investigated. The results show that the metastable β1 phase was formed in the as-cast solidification through rapid solidification, because both Zn atoms and the short holding-time at molten liquid facilitated the formation of the β1 phase. The β1 phase grew from 35.6 to 154 nm during the sintering process. Meanwhile, the fine lamellar LPSO phase was simultaneously formed after the Zn-Gd clusters were generated from the supersaturated solid solution, and the width of the LPSO phase was only in the range of 2–30 nm. The third strengthening phase, the metastable β′ phase, was obtained by aging treatment. The results of hardness testing implied that the hardness of the alloy containing the aforementioned three nanosized strengthening phases significantly improved about 47% to 126 HV compared with that of the as-cast ingot.


2016 ◽  
Vol 90 ◽  
pp. 115-121 ◽  
Author(s):  
Guodong Cui ◽  
Xialu Wei ◽  
Eugene A. Olevsky ◽  
Randall M. German ◽  
Junying Chen

2021 ◽  
pp. 158-161
Author(s):  
E.V. Ageeva ◽  
B.N. Sabel’nikov

The results of experimental studies of a KNT16 tungsten-free hard alloy sintered from electroerosive powders obtained in ethyl alcohol are presented. It is shown that the use of the spark plasma sintering method to produce products from powder obtained by electroerosive dispersion of the alloy KNT16 will ensure high performance of parts due to the uniformity of the surface, favorable structure and low porosity of the product.


2018 ◽  
Vol 7 (3.32) ◽  
pp. 76
Author(s):  
Fei Gao ◽  
Yongbum Choi ◽  
Yosuke Dobashi ◽  
Kazuhiro Matsugi

In order to obtain the high performance materials with high thermal conductivity, high electrical conductivity, low thermal expansion, good mechanical properties and low density, Graphene has higher thermal conductivity comparison with other ceramic particle. In this study, graphene dispersed aluminum (Al) composites was developed by spark plasma sintering. Volume fraction of graphene were 10, 20 and 30 vol.%. Fabrication conditions of graphene dispersed aluminum (Al) composites were temperature of 813K and applied pressure of 80 MPa. As composite properties are affected by the dispersibility and volume fraction of the graphene particles, the relationship among the dispersibility of dispersant and the thermal conductivity and mechanical properties was investigated.  


Sign in / Sign up

Export Citation Format

Share Document