titanium carbonitride
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 49)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 31 (4) ◽  
pp. 518-529
Author(s):  
Vladimir A. Skryabin

Introduction. The paper presents the results of experimental studies of power parameters when hard alloy steels are machined with tools, the cutting units of which have multilayer hard, heat-resistant and wear-resistant coatings. The obtained data will make it possible to optimize machining hard-to-machine materials. Materials and Methods. The aim of the study is to measure the power parameters of turning products and to create experimental formulas of power parameters for different technological modes. For this purpose, a special measuring multicomponent complex was used to estimate the influence of the mode parameters on the change in the cutting force components. Results. The numerically controlled machine tool was retooled by combining it with a three-component dynamometer and tooling. The cutting unit of the tool was coated with a multi-layer hard, heat-resistant and wear-resistant coating. The tool was equipped with instruments connected to a personal computer for measuring and processing experimental data. According to the results of the study, there have been obtained graphical dependences and empirical formulas, which take into account the influence of the mode parameters on the cutting force components when machining the units of alloy steels of high hardness, heat resistance and wear resistance. Discussion and Conclusion.The study allowed us to obtain experimental formulas of cutting force components for different mode parameters when machining parts by the tool equipped with cutting plates. The plates are coated with multilayer hard and wear-resistant coatings of titanium carbonitride, aluminum oxide and nickel nitride. The coating increases significantly the hardness, heat and wears resistance of the tool cutting unit and provides quality machining.


Author(s):  
Vladimir Bolshakov ◽  
Aleksandr Kalinin ◽  
Diana Hlushkova ◽  
Georgij Tohtar ◽  
Valeriy Bagrov ◽  
...  

For high-strength structural steels, the problem of grinding grain and increasing strength is solved by the use of highly efficient technologies, the development of new steel compositions and the development of rational thermomechanical processing. Goal. The aim of the work is to transform the structure, study the methods of grain grinding and increase the strength properties of structural steels 09Г2, 09Г2С as a result of modification by nanodisperse compositions, heat treatment and intense plastic deformation. Methodology. The research material was structural low-carbon steels 09G2, 09G2S. The process of modifying the steel parameters of the geometric shape of the melts was carried out by smelting steels 09G2 and 09G2C in an induction furnace. The modified workpieces were subjected to intensive plastic deformation and heat-treating treatment according to the mode: heating temperature 1050 °C, exposure 5 min; cooled medium: water and 20 % solution of NaCl in water. Then  – a rest at temperatures of 500 °C; 600 °C, exposure time – 30 minutes. Metallographic studies of the structure of steels before and after modification and mechanical testing of standard samples were performed. Results. The study of the structure grains of steels 09Г2 and 09Г2С in the initial state showed the presence of large grains up to 30 μm, reduced microhardness and yield strength. Originality. The substantiation of the choice of type and fraction of nanodisperse modifier was carried out. The use of plasma-chemical synthesis to obtain nanopowders based on titanium was substantiated. Nanopowders of titanium carbonitride Ti (CN) fraction 50 ... 100 nm were obtained by the method of plasma chemical synthesis. Practical value. The following methods were proposed for grinding grain and increasing the strength properties of steels: nanomodification, intensive plastic deformation in combination with heat-strengthening treatment.


Author(s):  
V.I. Bolshakov ◽  
Alexander Kalinin

The state of the problem of grinding the grain structure and improving the mechanical properties of low-alloy structural steels has been studied. The state of the problem of grain structure refinement and improving the mechanical properties of low-alloy structural steels has been studied. The role of nanodispersed additives is reduced to the creation of additional artificial crystallization centers in the melt. They must be consistent with the critical radiuses of the embryos. According to our calculations, for the grinding of primary austenite grains in castings, the size of the introduced particles should be 40–50 nm. Output and modified castings of 09G2 and 09G2S steels were subjected to severe plastic deformation by equal-channel angular pressing followed by low-temperature annealing at 350 °C. In the initial state, cast steels 09G2 and 09G2S had a ferrite-pearlite structure with an average primary austenite grain size of 30 μm; after modification and deformation, the grain size was 10 μm. After quenching and cooling in water, the structure has changed insignificantly - ferritic-reed, with an average grain size of ~ 8...10 microns. After cooling the quenched samples in a solution of 20 % NaCl in water, the structure of packet martensite was obtained. In the initial state, the studied steels have insufficiently high property values: microhardness Нμ up to 3000 MPa, yield point σ 0,2 up to 800 MPa. When quenching in water, the hardness somewhat increases, the most significant increase is observed when the samples are cooled in a NaCl solution. Due to the significant grinding of martensite crystals, accelerated cooling provides a greater increase in hardness. A nanodispersed powder of titanium carbonitride Ti (CN) with a fraction of 50...100 nm was obtained by the method of plasma-chemical synthesis, the process technology was developed. Intensive plastic deformation of 09G2 and 09G2S steel castings was carried out. The structure and properties of steels before and after treatments have been studied. As a result of the combination of hardening methods, the grain size of the steels was reduced by 3 times and the yield strength increased from 3000 to 4000 MPa. Nanodispersed powder of titanium carbonitride Ti (CN) with a fraction of 50...100 nm was obtained by the method of plasma chemical synthesis, and a process technology was developed. Intensive plastic deformation of castings of 09G2 and 09G2S steels was carried out. The structure and properties of steels before and after treatments were studied. As a result of a combination of hardening methods, grinding of steel grains by 3 times and increasing the yield strength from 3000 to 4000 MPa was achieved


2021 ◽  
pp. 100075
Author(s):  
Kun Liang ◽  
Anika Tabassum ◽  
Manish Kothakonda ◽  
Xiaodong Zhang ◽  
Ruiqi Zhang ◽  
...  

2021 ◽  
Author(s):  
A.A. Mamaeva ◽  
◽  
A.V. Panichkin ◽  
A.K. Kenzhegulov ◽  
B.B. Kshibekova ◽  
...  

Titanium carbonitride (TiCN) is of high relevance in the field of creating wear-resistant protective coatings in order to ensure maximum wear resistance and service life of parts of friction units. Titanium carbonitride coatings were obtained by magnetron sputtering at various bias substrate in the range from 0 to -130 V with a step of 10 V. The effect of the bias substrate on the deposition rate, phase and elemental composition, and the friction coefficient of the obtained coatings was investigated. As a result of the obtained dependences, the most optimal mode of deposition by the method of reactive magnetron sputtering with a negative bias voltage on the substrate was determined.


Sign in / Sign up

Export Citation Format

Share Document