Enhanced dye photocatalysis and recycling abilities of semi-wrapped TiO2@carbon nanofibers formed via foaming agent driving

2018 ◽  
Vol 44 (2) ◽  
pp. 1711-1718 ◽  
Author(s):  
Yaohui Liang ◽  
Baoming Zhou ◽  
Nan Li ◽  
Liangsen Liu ◽  
Zhiwei Xu ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49220-49226 ◽  
Author(s):  
Xianhang Sui ◽  
Xianhua Li ◽  
Liang Chen ◽  
Guangyou Li ◽  
Fengsen Lin ◽  
...  

Based on the merits and demerits of conventional methods for fabricating TiO2@carbon nanofibers (TiO2@CNFs) composites, the composites were prepared via a foaming-assisted electrospinning strategy and subsequent thermal treatment.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (8) ◽  
pp. 515-521 ◽  
Author(s):  
EIJA KENTTÄ ◽  
HANNA KOSKELA ◽  
SARA PAUNONEN ◽  
KARITA KINNUNEN-RAUDASKOSKI ◽  
TUOMO HJELT

This paper reports experiments on silica coating formulations that are suitable for application as a thin pigment layer with foam coating technique on a paper web. To understand the foaming properties of nanosilica dispersions, the critical micelle concentration, foam half-life time, and foam bubble size stability were determined with three different foaming agents. The results indicate that the bubble stability measurement is a useful characterization method for foam coating purposes. Pilot foam coating trials were done and the effects of the chosen foaming agents were studied on the properties of the nanosilica-coated paper. The surface hydrophilicity of silica coated paper was related not only to silica pigment, but also to the chemical nature of the foaming agent. Standard paper properties were not affected by the thin silica coating.


2014 ◽  
Vol 29 (8) ◽  
pp. 814 ◽  
Author(s):  
GUO Li-Ping ◽  
BAI Jie ◽  
LIANG Hai-Ou ◽  
LI Chun-Ping ◽  
SUN Wei-Yan ◽  
...  

2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractSince the cytocompatibility of carbon nanofibers with respect to neural applications remains largely uninvestigated, the objective of the present in vitro study was to determine cytocompatibility properties of formulations containing carbon nanofibers. Carbon fiber substrates were prepared from four different types of carbon fibers, two with nanoscale diameters (nanophase, or less than or equal to 100 nm) and two with conventional diameters (or greater than 200 nm). Within these two categories, both a high and a low surface energy fiber were investigated and tested. Astrocytes (glial scar tissue-forming cells) and pheochromocytoma cells (PC-12; neuronal-like cells) were seeded separately onto the substrates. Results provided the first evidence that astrocytes preferentially adhered on the carbon fiber that had the largest diameter and the lowest surface energy. PC-12 cells exhibited the most neurites on the carbon fiber with nanodimensions and low surface energy. These results may indicate that PC-12 cells prefer nanoscale carbon fibers while astrocytes prefer conventional scale fibers. A composite was formed from poly-carbonate urethane and the 60 nm carbon fiber. Composite substrates were thus formed using different weight percentages of this fiber in the polymer matrix. Increased astrocyte adherence and PC-12 neurite density corresponded to decreasing amounts of the carbon nanofibers in the poly-carbonate urethane matrices. Controlling carbon fiber diameter may be an approach for increasing implant contact with neurons and decreasing scar tissue formation.


2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractCarbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses, however, limited evidence on their cytocompatibility properties exists. The objective of the present in vitro study was to determine cytocompatibility and material properties of formulations containing carbon nanofibers to predict the gliotic scar tissue response. Poly-carbonate urethane was combined with carbon nanofibers in varying weight percentages to provide a supportive matrix with beneficial bulk electrical and mechanical properties. The substrates were tested for mechanical properties and conductivity. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion. Results provided the first evidence that astrocytes preferentially adhered to the composite material that contained the lowest weight percentage of carbon nanofibers. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.


2016 ◽  
Vol 9 (2) ◽  
pp. 120-128
Author(s):  
Haspiadi Haspiadi ◽  
Kurniawaty Kurniawaty

Research of  the utilization solid waste of palm oil fuel ash from boiler as row materials  for manufacturing light concrete brick has been conducted. The main objective of this study is to investigate the potential use solid waste of palm oil fuel ash from palm oil mill boilers as row materials for manufacturing light concrete brick has recently attracted for an alternative environmentally sustainable application. In this study, light concrete brick made with various proportions of palm oil fuel ash from palm oil mill boilers and sand were fabricated and studied under laboratory scales. Percentage of palm oil fuel ash of 0% as a control,  10%, 20%, 30%, 40%, 50%, 60%, replacement  sand, wheras others materials such as Portland cement, lime, gypsum, foaming agent and aluminium with the numbers constant. The quality of light concreate brick   were applied followed by the compressive strength test, density and water absorption capacity. The study discovered that the compressive strength for all composition meet the recommended value to light structural of 6.89 MPa as prescribed in SNI 03-3449-2002. In the same manner density of light concrete brick for all proportion under the maximum density recommended value of 1400 Kg/m3 according to SNI 03-3449-2002. While water absorption capacity of increased by the increasing use of ashes. Therefore, palm oil fuel ash from boiler can be used as raw material for the light concrete brick which is  environmental friendly because using solid waste and also an alternative handling solid waste.ABSTRAKPenelitian pemanfaatan limbah padat abu cangkang dan serat kelapa sawit dari boiler sebagai bahan baku pembuatan bata beton ringan telah dilakukan. Tujuan dari penelitian ini adalah pemanfaatan limbah padat abu boiler berbahan bakar cangkang dan serat sebagai bahan pembuatan bata beton ringan sebagai salah satu alternatif pengelolaan lingkungan yang bekelanjutan. Dalam penelitian ini, bata beton ringan dibuat dengan berbagai komposisi abu boiler dan pasir yang diproduksi dalam  skala laboratorium. Persentase dari abu berturut-turut 0% sebagai kontrol, 10%, 20%, 30%, 40%, 50% dan 60% mensubtitusi pasir, sedangkan bahan lain yaitu semen, kapur, gypsum,  foaming  agent serta aluminium pasta dengan jumlah tetap. Mutu bata beton ringan yang diujikan adalah kuat tekan, bobot jenis dan daya serap air. Hasil penelitian menunjukkan bahwa kuat tekan untuk semua komposisi memenuhi batas minimum yang dipersyaratkan untuk stuktural ringan yaitu 6,89 MPa sesuai SNI 03-3449-2002. Demikian pula bobot jenis dari bata ringan yang dihasilkan masih dibawah dari batas maksimum yang direkomendasikan SNI 03-3449-2002 yaitu maksimal 1400 Kg/m3. Sedangkan daya serap air mengalami kenaikan dengan naiknya jumlah abu yang digunakan . Limbah padat abu boiler berbahan bakar cangkang dan serat sawit dapat dimanfaatkan sebagai bahan baku pembuatan bata beton ringan yang ramah lingkungan dengan memanfaatkan limbah dan menjadi salah satu alternatif pengelolaan limbah. Kata kunci :  Abu cangkang kelapa sawit,  bata beton ringan, bobot jenis,  daya serap air,  limbah,  kuat tekan


2019 ◽  
Vol 18 (8) ◽  
pp. 1703-1710 ◽  
Author(s):  
Emanuela Galli ◽  
Valerio Giorgio Muzzini ◽  
Antonio Finizio ◽  
Pietro Fumagalli ◽  
Paola Grenni ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document