Enhancement of the analytical solution for double torsion test using extended finite element techniques

2019 ◽  
Vol 45 (7) ◽  
pp. 9548-9559
Author(s):  
Karuppasamy Pandian Marimuthu ◽  
Kwangmin Lee ◽  
Felix Rickhey ◽  
Hyungyil Lee
Author(s):  
Vishal Hotwani ◽  
Ashok V. Kumar

Extended finite element method (or XFEM) locally enriches the finite element solution using a priori known analytical solution. XFEM has been used extensively in fracture mechanics to compute stress concentration at crack tips. It is a mesh independent method that allows crack to be represented as an equation instead of using the mesh to approximate it. When this approach is used along with Implicit Boundary Finite Element Method (IBFEM) to apply boundary conditions, a fully mesh independent approach for studying crack tip stresses can be implemented. An efficient scheme for blending the enriched solution structure with the underlying finite element solution is presented. A ramped step function is introduced for modeling discontinuity or a crack within an element. Exact analytical solution is used as enrichment at the crack tip element to obtain the stress intensity factor (SIF) directly without any post processing or contour integral computation. Several examples are used to study the convergence and accuracy of the solution.


1979 ◽  
Vol 101 (4) ◽  
pp. 328-335 ◽  
Author(s):  
A. A. Tseng ◽  
J. T. Berry

A special three-dimensional crack-tip element has been developed to investigate a simple and widely applicable fracture toughness test method. Previous experimental work with the double-torsion method has shown that the use of a relatively thin sectioned specimen may be permitted. The section concerned is considerably thinner than that used in conventional techniques, while the technique also simplifies the determination of the fracture toughness parameter. K IC values, which are independent of the crack length, have been obtained for glasses, ceramics, polymers, and a variety of metals and alloys. The numerical solution presented is supportive of many experimental observations made during testing. Excellent correlation between the finite element and experimental results has been obtained. The maximum stress intensity factor is shown to be almost independent of crack length over a considerable range.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 397
Author(s):  
Yahya Ali Fageehi

This paper presents computational modeling of a crack growth path under mixed-mode loadings in linear elastic materials and investigates the influence of a hole on both fatigue crack propagation and fatigue life when subjected to constant amplitude loading conditions. Though the crack propagation is inevitable, the simulation specified the crack propagation path such that the critical structure domain was not exceeded. ANSYS Mechanical APDL 19.2 was introduced with the aid of a new feature in ANSYS: Smart Crack growth technology. It predicts the propagation direction and subsequent fatigue life for structural components using the extended finite element method (XFEM). The Paris law model was used to evaluate the mixed-mode fatigue life for both a modified four-point bending beam and a cracked plate with three holes under the linear elastic fracture mechanics (LEFM) assumption. Precise estimates of the stress intensity factors (SIFs), the trajectory of crack growth, and the fatigue life by an incremental crack propagation analysis were recorded. The findings of this analysis are confirmed in published works in terms of crack propagation trajectories under mixed-mode loading conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199497
Author(s):  
Guanghui Xu ◽  
Shengkai Su ◽  
Anbin Wang ◽  
Ruolin Hu

The increase of axle load and train speed would cause intense wheelrail interactions, and lead to potential vibration related problems in train operation. For the low-frequency vibration reduction of a track system, a multi-layer track structure was proposed and analyzed theoretically and experimentally. Firstly, the analytical solution was derived theoretically, and followed by a parametric analysis to verify the vibration reduction performance. Then, a finite element simulation is carried out to highlight the influence of the tuned slab damper. Finally, the vibration and noise tests are performed to verify the results of the analytical solution and finite element simulation. As the finite element simulation indicates, after installation of the tuned slab damper, the peak reaction force of the foundation can be reduced by 60%, and the peak value of the vertical vibration acceleration would decrease by 50%. The vibration test results show that the insertion losses for the total vibration levels are 13.3 dB in the vertical direction and 21.7 dB in the transverse direction. The noise test results show that the data of each measurement point is smoother and smaller, and the noise in the generating position and propagation path can be reduced by 1.9 dB–5.5 dB.


Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.


Sign in / Sign up

Export Citation Format

Share Document