Defect driven d0 ferromagnetism and colossal dielectric behavior in Bi(Zn0.5Ti0.5)O3–PbTiO3 ceramics

2019 ◽  
Vol 45 (17) ◽  
pp. 22948-22955
Author(s):  
Manasmita Mishra ◽  
Yajun Zhang ◽  
Debabrata Mishra ◽  
M.P.K. Sahoo ◽  
P.K. Pradhan ◽  
...  
1993 ◽  
Vol 8 (4) ◽  
pp. 880-884 ◽  
Author(s):  
C.A. Randall ◽  
A.D. Hilton ◽  
D.J. Barber ◽  
T.R. Shrout

This paper addresses the observed grain size with dependence of the dielectric behavior for Pb(Mg1/3Nb2/3)O3: PbTiO3 ceramics grain sizes ≥ 1.0 μm. A combined transmission electron microscopy (TEM) analysis and dielectric characterization are modeled with a modified brick wall approach. From this model, it is possible to extrapolate information such as single crystal values of dielectric maximum, Kmax, the diffuseness coefficient, δ, and the average intergranular thickness for relaxor ceramics. The calculated intergranular thickness agrees well with TEM observations, ≍2.0 nm. This semi-empirical method may be potentially useful in development work of relaxor ceramics to predict the optimized dielectric properties obtainable within microstructural restrictions.


2019 ◽  
Author(s):  
Johannes P. Dürholt ◽  
Babak Farhadi Jahromi ◽  
Rochus Schmid

Recently the possibility of using electric fields as a further stimulus to trigger structural changes in metal-organic frameworks (MOFs) has been investigated. In general, rotatable groups or other types of mechanical motion can be driven by electric fields. In this study we demonstrate how the electric response of MOFs can be tuned by adding rotatable dipolar linkers, generating a material that exhibits paralectric behavior in two dimensions and dielectric behavior in one dimension. The suitability of four different methods to compute the relative permittivity κ by means of molecular dynamics simulations was validated. The dependency of the permittivity on temperature T and dipole strength μ was determined. It was found that the herein investigated systems exhibit a high degree of tunability and substantially larger dielectric constants as expected for MOFs in general. The temperature dependency of κ obeys the Curie-Weiss law. In addition, the influence of dipolar linkers on the electric field induced breathing behavior was investigated. With increasing dipole moment, lower field strength are required to trigger the contraction. These investigations set the stage for an application of such systems as dielectric sensors, order-disorder ferroelectrics or any scenario where movable dipolar fragments respond to external electric fields.


2015 ◽  
Vol 241 ◽  
pp. 226-236 ◽  
Author(s):  
Neha Solanki ◽  
Rajshree B. Jotania

Influence of Ca substitution on structural, magnetic and dielectric properties of Ba3Co2-xCaxFe24O41(where x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0), prepared by Sol-Gel auto-combustion method, has been investigated in present studies. The obtained powder was sintered at 950 oC for 4 hrs. in the static air atmosphere. Structural analysis of Ca-doped Ba3Co2-xCaxFe24O41powders revealed pure Z-type hexaferrite phase at low temperature. The frequency dependent dielectric constant (Єʹ) and magnetic properties such as remanent magnetization (Mr), saturation magnetization (Ms) and coercivity (Hc) were studied. It is observed that coercivity increased gradually with increase in calcium content. The real dielectric constant (Єʹ) and dielectric loss tangent (tan δ) were studied in the frequency range of 20Hz to 2MHz. The dielectric parameters for all samples show normal dielectric behavior as observed in hexaferrites. Contents of Paper


Author(s):  
Yizhe Li ◽  
Peter I. Cowin ◽  
Bing Wang ◽  
Annette Kleppe ◽  
Tim P. Comyn ◽  
...  
Keyword(s):  

Author(s):  
Qaisar Khan ◽  
Abdul Majeed ◽  
Nisar Ahmad ◽  
Iftikhar Ahmad ◽  
Rashid Ahmad

2006 ◽  
Vol 13 (3) ◽  
pp. 532-538 ◽  
Author(s):  
A.A. Shayegani Akmal ◽  
H. Borsi ◽  
E. Gockenbach ◽  
V. Wasserberg ◽  
H. Mohseni

Sign in / Sign up

Export Citation Format

Share Document