Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems

2020 ◽  
Vol 46 (2) ◽  
pp. 1711-1721 ◽  
Author(s):  
M.S. Al-Buriahi ◽  
A.S. Abouhaswa ◽  
H.O. Tekin ◽  
C. Sriwunkum ◽  
F.I. El-Agawany ◽  
...  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bünyamin Aygün ◽  
Erdem Şakar ◽  
Abdulhalik Karabulut ◽  
Bünyamin Alım ◽  
Mohammed I. Sayyed ◽  
...  

AbstractIn this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


2011 ◽  
Vol 38 (10) ◽  
pp. 2204-2212 ◽  
Author(s):  
E. Yılmaz ◽  
H. Baltas ◽  
E. Kırıs ◽  
İ. Ustabas ◽  
U. Cevik ◽  
...  

2014 ◽  
Vol 64 ◽  
pp. 301-310 ◽  
Author(s):  
Vishwanath P. Singh ◽  
N.M. Badiger

2016 ◽  
Vol 94 (11) ◽  
pp. 1133-1137 ◽  
Author(s):  
M.I. Sayyed

In the present paper, the basic radiation parameters of tellurite glasses with different forming oxides (B2O3, BaO, K2O, V2O5, WO3, and ZnO) have been studied over a wide photon energy range from 1 keV to 100 GeV, using WinXCom program. These parameters are the mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), and electron density (Ne,eff). In addition, the macroscopic effective removal cross sections (ΣR) for fast neutrons have been calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected glass systems TeO2–WO3 and TeO2–B2O3 showed superior shielding properties for gamma-ray and neutrons, respectively. It is shown that the selected glass systems have higher values of the mass attenuation coefficients (μ/ρ) than concretes and 0.7SiO2:0.3BaO glass. These results indicate that tellurite glasses can be used as radiation shielding materials.


2019 ◽  
Vol 518 ◽  
pp. 92-102 ◽  
Author(s):  
H.O. Tekin ◽  
E. Kavaz ◽  
E.E. Altunsoy ◽  
M. Kamislioglu ◽  
O. Kilicoglu ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
pp. 326
Author(s):  
M.I. Sayyed ◽  
K.A. Mahmoud ◽  
O.L. Tashlykov ◽  
Mayeen Uddin Khandaker ◽  
M.R.I. Faruque

Elastic moduli were theoretically computed using the Makishima–Mackenzie model for SiO2–Na2O–CaO glasses doped with Sb2O3 contents. The calculated elastic moduli (Young’s, bulk, shear, and longitudinal modulus) were observed to increase with an increase in the Sb2O3 contents. The microhardness showed an increase, while Poisson’s ratio decreased with the rise of the Sb2O3 contents. In addition, gamma-ray and neutron shielding parameters were evaluated for the investigated glasses. The linear attenuation coefficient (LAC) was simulated using the Monte Carlo N-particle transport code (MCNP-5). Other parameters, such as the mass attenuation coefficient (MAC), transmission factor (TF), and half-value layer, were calculated based on the simulated LAC. The addition of Sb2O3 content was observed to enhance the investigated glasses’ shielding parameters, where the highest LAC was achieved for the SCNSb10 glass with 10 mol% Sb2O3 and decreased from 0.441 to 0.154 cm−1 at gamma energies between 0.248 and 1.406 MeV. Furthermore, the fast neutron effective removal cross-section (∑R) was computed theoretically. The calculated results showed that the highest ∑R was equal to 0.0341 cm2g−1 and was obtained for the SCNSb0 glass, which had no Sb2O3 content, while the lowest ∑R was equal to 0.0286 cm2 g−1 for the SCNSb10 glass sample. The present work was carried out to examine the advantages of the soda–lime glasses with different Sb2O3 contents in several photon shielding applications, especially for radiation safety in nuclear installations.


Sign in / Sign up

Export Citation Format

Share Document