Molecular dynamics study of the removal mechanism of SiC in a fixed abrasive polishing in water lubrication

2020 ◽  
Vol 46 (16) ◽  
pp. 24961-24974
Author(s):  
Piao Zhou ◽  
Jun Li ◽  
Zikun Wang ◽  
Jiapeng Chen ◽  
Xue Li ◽  
...  
2019 ◽  
Vol 45 (12) ◽  
pp. 14614-14624 ◽  
Author(s):  
Piao Zhou ◽  
Xunda Shi ◽  
Jun Li ◽  
Tao Sun ◽  
Yongwei Zhu ◽  
...  

2007 ◽  
Vol 359-360 ◽  
pp. 450-454 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge ◽  
Zhi Jian Hou

The physical model of fixed-abrasive diamond wire-sawing monocrystalline silicon was founded to analyze the elastic deformation of the wire, supposing that every grit was connected to the surface of the wire by a spring. Ignoring lateral vibration of the wire, the geometrical model of wire-sawing was founded; the average cut depth of single grit was calculated theoretically. Based the indentation fracture mechanics and investigations on brittle-ductile transition of machining monocrystalline silicon, the removal mechanism and surface formation was studied theoretically. It shows that in the case of wire-sawing velocity of 10m/s or higher, infeed velocity of 0.20mm/s and diamond grain size of 64μm or smaller, the chip formation and material removal is in a brittle regime mainly, but the silicon wafer surface formation is sawed in a ductile regime. The size of the abrasives, the wire-saw velocity and infeed velocity can influence the sawing process obviously.


2011 ◽  
Vol 239-242 ◽  
pp. 2775-2778
Author(s):  
Jia Xuan Chen ◽  
Ying Chun Liang ◽  
Xia Yu ◽  
Zhi Guo Wang ◽  
Zhen Tong

To study the removal mechanism of materials during nano cutting, molecular dynamics method is adopted to simulate single crystal copper nanomachining processes, and subsurface defects evolvements and chip forming regulation are analyzed by revised centro-symmetry parameter method and the ratios of the tangential cutting forceand the normal cutting force. The results show that there are different defects under different cutting depths. When cutting depths is shallower, there are dislocation loop nucleation in the subsurface of the workpiece beneath the tool; however, when the cutting depths is deeper, there are dislocations nucleation and slipping along {101} plane and (111) plane. In addition, both tangential cutting forceand the normal cutting force decrease as the cutting depths decreasing. When the ratios of the normal cutting force and the tangential cutting force is below 0.9, the chip will be formed.


Sign in / Sign up

Export Citation Format

Share Document