Thermal prehistory, structure and high-temperature thermodynamic properties of Y2O3-CeO2 and Y2O3-ZrO2-CeO2 solid solutions

Author(s):  
Olga Yu Kurapova ◽  
Sergey M. Shugurov ◽  
Evgenia A. Vasil'eva ◽  
Daniil A. Savelev ◽  
Vladimir G. Konakov ◽  
...  
1985 ◽  
Vol 46 (6) ◽  
pp. 709-717 ◽  
Author(s):  
Jean-Francis Marucco ◽  
Bertrand Poumellec ◽  
Jacques Gautron ◽  
Philippe Lemasson

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 330
Author(s):  
Sangryun Kim ◽  
Kazuaki Kisu ◽  
Shin-ichi Orimo

We report the stabilization of the high-temperature (high-T) phase of lithium carba-closo-decaborate, Li(CB9H10), via the formation of solid solutions in a Li(CB9H10)-Li2(B12H12) quasi-binary system. Li(CB9H10)-based solid solutions in which [CB9H10]− is replaced by [B12H12]2− were obtained at compositions with low x values in the (1−x)Li(CB9H10)−xLi2(B12H12) system. An increase in the extent of [B12H12]2− substitution promoted stabilization of the high-T phase of Li(CB9H10), resulting in an increase in the lithium-ion conductivity. Superionic conductivities of over 10−3 S cm−1 were achieved for the compounds with 0.2 ≤ x ≤ 0.4. In addition, a comparison of the Li(CB9H10)−Li2(B12H12) system and the Li(CB9H10)−Li(CB11H12) system suggests that the valence of the complex anions plays an important role in the ionic conduction. In battery tests, an all-solid-state Li–TiS2 cell employing 0.6Li(CB9H10)−0.4Li2(B12H12) (x = 0.4) as a solid electrolyte presented reversible battery reactions during repeated discharge–charge cycles. The current study offers an insight into strategies to develop complex hydride solid electrolytes.


Sign in / Sign up

Export Citation Format

Share Document