solid solution formation
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 26)

H-INDEX

26
(FIVE YEARS 4)

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 330
Author(s):  
Sangryun Kim ◽  
Kazuaki Kisu ◽  
Shin-ichi Orimo

We report the stabilization of the high-temperature (high-T) phase of lithium carba-closo-decaborate, Li(CB9H10), via the formation of solid solutions in a Li(CB9H10)-Li2(B12H12) quasi-binary system. Li(CB9H10)-based solid solutions in which [CB9H10]− is replaced by [B12H12]2− were obtained at compositions with low x values in the (1−x)Li(CB9H10)−xLi2(B12H12) system. An increase in the extent of [B12H12]2− substitution promoted stabilization of the high-T phase of Li(CB9H10), resulting in an increase in the lithium-ion conductivity. Superionic conductivities of over 10−3 S cm−1 were achieved for the compounds with 0.2 ≤ x ≤ 0.4. In addition, a comparison of the Li(CB9H10)−Li2(B12H12) system and the Li(CB9H10)−Li(CB11H12) system suggests that the valence of the complex anions plays an important role in the ionic conduction. In battery tests, an all-solid-state Li–TiS2 cell employing 0.6Li(CB9H10)−0.4Li2(B12H12) (x = 0.4) as a solid electrolyte presented reversible battery reactions during repeated discharge–charge cycles. The current study offers an insight into strategies to develop complex hydride solid electrolytes.


2021 ◽  
Author(s):  
Jiyu Tian ◽  
Eli Zysman-Colman ◽  
Finlay Morrison

<p>The formation and study of a partial solid solution <a></a><a>Az<sub>1-<i>x</i></sub>FA<i><sub>x</sub></i>PbBr<sub>3</sub></a>, using ‘similar’ sized cations azetidinium (Az<sup>+</sup>) and formamidinium (FA<sup>+</sup>), was explored via mechanosynthesis and precipitation synthesis. The composition and lattice parameters of samples from both syntheses were analysed by <sup>1</sup>H NMR and Rietveld refinement of the powder X-ray diffraction. A clear mismatch in the composition of the perovskite was found between the precipitated samples and the corresponding solutions. Such a mismatch was not observed for samples obtained via mechanosynthesis. The discrepancy suggests products are kinetically-controlled during precipitation, compared to thermodynamically-controlled mechanosynthesis. Furthermore, the cell volume as a function of composition in both 6H (Az-rich) and 3C (FA-rich) solid solutions suggests that FA<sup>+</sup> is actually smaller than Az<sup>+</sup>, contradicting the literature. In the 3C (Az-poor) solid solutions, the extent of Az<sub>1-<i>x</i></sub>FA<i><sub>x</sub></i>PbBr<sub>3 </sub>is unexpectedly smaller than Az<sub>1-<i>x</i></sub>MA<i><sub>x</sub></i>PbBr<sub>3</sub>, again in contradiction to the expectation based on the reported cation sizes. These results indicate that other factors, as yet unidentified, must also contribute to the solid solution formation of organic-inorganic hybrid perovskites, not simply the relative sizes of the A-site cations.</p>


2021 ◽  
Author(s):  
Jiyu Tian ◽  
Eli Zysman-Colman ◽  
Finlay Morrison

<p>The formation and study of a partial solid solution <a></a><a>Az<sub>1-<i>x</i></sub>FA<i><sub>x</sub></i>PbBr<sub>3</sub></a>, using ‘similar’ sized cations azetidinium (Az<sup>+</sup>) and formamidinium (FA<sup>+</sup>), was explored via mechanosynthesis and precipitation synthesis. The composition and lattice parameters of samples from both syntheses were analysed by <sup>1</sup>H NMR and Rietveld refinement of the powder X-ray diffraction. A clear mismatch in the composition of the perovskite was found between the precipitated samples and the corresponding solutions. Such a mismatch was not observed for samples obtained via mechanosynthesis. The discrepancy suggests products are kinetically-controlled during precipitation, compared to thermodynamically-controlled mechanosynthesis. Furthermore, the cell volume as a function of composition in both 6H (Az-rich) and 3C (FA-rich) solid solutions suggests that FA<sup>+</sup> is actually smaller than Az<sup>+</sup>, contradicting the literature. In the 3C (Az-poor) solid solutions, the extent of Az<sub>1-<i>x</i></sub>FA<i><sub>x</sub></i>PbBr<sub>3 </sub>is unexpectedly smaller than Az<sub>1-<i>x</i></sub>MA<i><sub>x</sub></i>PbBr<sub>3</sub>, again in contradiction to the expectation based on the reported cation sizes. These results indicate that other factors, as yet unidentified, must also contribute to the solid solution formation of organic-inorganic hybrid perovskites, not simply the relative sizes of the A-site cations.</p>


2021 ◽  
Vol 1016 ◽  
pp. 990-996
Author(s):  
Takeshi Nagase

Fast electron irradiation can induce the solid-state amorphization (SSA) of many intermetallic compounds. The occurrence of SSA stimulated by fast electron irradiation was found in the Al0.5TiZrPdCuNi high-entropy alloy (HEA). The relationship between the occurrence of SSA in intermetallic compounds under fast electron irradiation and the empirical alloy parameters for predicting the solid-solution-formation tendency in HEAs was discussed. The occurrence of SSA in intermetallic compounds was hardly predicted, only by the alloy parameters of δ or ΔHmix, which have been widely used for predicting solid-solution formation in HEAs. All intermetallic compounds with ΔHmix ≤ -35 kJ/mol and those with δ ≥ 12.5 exhibit the occurrence of SSA. This implies that the intermetallic compounds with a largely negative ΔHmix value and a largely positive δ parameter are favorable for the occurrence of SSA.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4330
Author(s):  
Dumitru Mitrica ◽  
Ioana Cristina Badea ◽  
Mihai Tudor Olaru ◽  
Beatrice Adriana Serban ◽  
Denisa Vonica ◽  
...  

Lightweight complex concentrated alloys (LWCCA), composed of elements with low density, have become a great area of interest due to the high demand in a large number of applications. Previous research on LWCCAs was focused on high entropy multicomponent alloy systems that provide low density and high capability of solid solution formation. Present research introduces two alloy systems (Al-Cu-Si-Zn-Mg and Al-Mn-Zn-Mg-Si) that contain readily available and inexpensive starting materials and have potential for solid solution formation structures. For the selection of appropriate compositions, authors applied semi-empirical criteria and optimization software. Specialized modeling software (MatCalc) was used to determine probable alloy structures by CALPHAD, non-equilibrium solidification and kinetic simulations. The selected alloys were prepared in an induction furnace. Specimens were heat treated to provide stable structures. Physicochemical, microstructural, and mechanical characterization was performed for the selected alloy compositions. Modeling and experimental results indicated solid solution-based structures in the as-cast and heat-treated samples. Several intermetallic phases were present at higher concentrations than in the conventional alloys. Alloys presented a brittle structure with compression strength of 486–618 MPa and hardness of 268–283 HV. The potential for uniform intermetallic phase distribution in the selected alloys makes them good candidates for applications were low weight and high resistance is required.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 812
Author(s):  
Felix Brandt ◽  
Martina Klinkenberg ◽  
Jenna Poonoosamy ◽  
Dirk Bosbach

226Ra is an important contributor to naturally occurring radioactive materials (NORM) and also considered in safety cases related to the disposal of spent nuclear fuel in a deep geological repository. Recrystallization and solid solution formation with sulfates is regarded as an important retention mechanism for 226Ra. In natural systems sulfates often occur as (Ba,Sr)SO4. Therefore, we have chosen this solid solution at the Ba-rich end for investigations of the 226Ra uptake. The resulting 226Ra-solubility in aqueous solution was assessed in comparison with a thermodynamic model of the solid solution-aqueous solution system (Ba,Sr,Ra)SO4 + H2O. The temperature and composition of the initial (Ba,Sr)SO4 solid solution were varied. Measurements of the solution composition were combined with microscopic observations of the solid and thermodynamic modeling. A complex recrystallization behavior of the solid was observed, including the dissolution of significant amounts of the solid and formation of metastable phases. The re-equilibration of Ba-rich (Ba,Sr)SO4 to (Ba,Sr,Ra)SO4 leads to a major reconstruction of the solid. Already trace amounts of Sr in the solid solution can have a significant impact on the 226Ra solubility, depending on the temperature. The experimental findings confirm the thermodynamic model, although not all solids reached equilibrium with respect to all cations.


Sign in / Sign up

Export Citation Format

Share Document