Effects of waste glass as a sand replacement on the strength and durability of fly ash/GGBS based alkali activated mortar

Author(s):  
Sasui Sasui ◽  
Gyuyong Kim ◽  
Jeongsoo Nam ◽  
Arie van Riessen ◽  
Marijana Hadzima-Nyarko
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 138 ◽  
Author(s):  
Xiaobin Wei ◽  
Feng Ming ◽  
Dongqing Li ◽  
Lei Chen ◽  
Yuhang Liu

Negative temperature curing is a very harmful factor for geopolymer mortar or concrete, which will decrease the strength and durability. The water in the geopolymer mixture may be frozen into ice, and the water content is a crucial factor. The purpose of this paper is to explore the influence of water content on the properties of alkali-activated binders mortar cured at −5 °C. Fly ash (FA) and ground granulated blast furnace slag (GGBFS) were used as binders. Three groups of experiments with different water content were carried out. The prepared samples were investigated through uniaxial compression strength test, Scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the determination of their compressive strength, microstructural features, phase, and composition. The results indicated that, the compressive strength of samples basically maintained 25.78 MPa–27.10 MPa at an age of 28 days; for 90 days, the values reached 33.4 MPa–34.04 MPa. The results showed that lower water content is beneficial to improving the early strength of mortar at −5 °C curing condition, while it has little impact on long-term strength. These results may provide references for the design and construction of geopolymer concrete in cold regions.


2019 ◽  
Vol 52 (5) ◽  
Author(s):  
G. Liu ◽  
M. V. A. Florea ◽  
H. J. H. Brouwers

Abstract This paper illustrates the application of waste glass powder as part of the binder in slag–fly ash systems activated by NaOH and NaOH/Na2CO3 activators. To evaluate the reaction kinetics, reaction products, mechanical properties, and durability performance of glass powder modified alkali activated slag–fly ash systems, calorimetry test, X-ray diffraction, FTIR, strength test, drying shrinkage tests, and carbonation test were conducted. From the isothermal calorimeter results, glass powder shows a higher reactivity compared to fly ash but still lower than slag. The reaction products of glass power modified samples exhibit an enhancement of polymerization degree of Si–O–T, observed in FTIR. As a consequence, higher drying shrinkage exists in glass modified mortars. The mechanical performance of different samples is mostly controlled by the Ca/Si of dry mixtures and activator type. After the slag–fly ash binder system was modified by the waste glass, a significant enhancement of resistance to carbonation was identified, especially for NaOH/Na2CO3 activated mortars, which show an increase of 300% on the carbonation resistance ability compared to the reference sample. The Na/(Si + Al) ratio of dry mixtures exhibits a positive correlation with carbonation resistance.


2022 ◽  
Vol 316 ◽  
pp. 125864
Author(s):  
Sasui Sasui ◽  
Gyuyong Kim ◽  
Jeongsoo Nam ◽  
Arie van Riessen ◽  
Marijana Hadzima-Nyarko ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2750
Author(s):  
Hassan Amer Algaifi ◽  
Abdeliazim Mustafa Mohamed ◽  
Eyad Alsuhaibani ◽  
Shahiron Shahidan ◽  
Fahed Alrshoudi ◽  
...  

Although free-cement-based alkali-activated paste, mortar, and concrete have been recognised as sustainable and environmental-friendly materials, a considerable amount of effort is still being channeled to ascertain the best binary or ternary binders that would satisfy the requirements of strength and durability as well as environmental aspects. In this study, the mechanical properties of alkali-activated mortar (AAM) made with binary binders, involving fly ash (FA) and granulated blast-furnace slag (GBFS) as well as bottle glass waste nano-silica powder (BGWNP), were opti-mised using both experimentally and optimisation modelling through three scenarios. In the first scenario, the addition of BGWNP varied from 5% to 20%, while FA and GBFS were kept constant (30:70). In the second and third scenarios, BGWNP (5–20%) was added as the partial replacement of FA and GBFS, separately. The results show that the combination of binary binders (FA and GBFS) and BGWNP increased AAM’s strength compared to that of the control mixture for all scenarios. In addition, the findings also demonstrated that the replacement of FA by BGWNP was the most significant, while the effect of GBFS replacement by BGWNP was less significant. In particular, the highest improvement in compressive strength was recorded when FA, GBFS, and BGWNP were 61.6%, 30%, and 8.4%, respectively. Furthermore, the results of ANOVA (p values < 0.0001 and high F-values) as well as several statistical validation methods (R > 0.9, RAE < 0.1, RSE < 0.013, and RRSE < 0.116) confirmed that all the models were robust, reliable, and significant. Similarly, the data variation was found to be less than 5%, and the difference between the predicted R2 and adj. R2 was very small (<0.2), thus confirming that the proposed non-linear quadratic equations had the capability to predict for further observation. In conclusion, the use of BGWNP in AAM could act as a beneficial and sustainable strategy, not only to address environmental issues (e.g., landfill) but to also enhance strength properties.


Sign in / Sign up

Export Citation Format

Share Document