scholarly journals Influence of Water Content on Mechanical Strength and Microstructure of Alkali-Activated Fly Ash/GGBFS Mortars Cured at Cold and Polar Regions

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 138 ◽  
Author(s):  
Xiaobin Wei ◽  
Feng Ming ◽  
Dongqing Li ◽  
Lei Chen ◽  
Yuhang Liu

Negative temperature curing is a very harmful factor for geopolymer mortar or concrete, which will decrease the strength and durability. The water in the geopolymer mixture may be frozen into ice, and the water content is a crucial factor. The purpose of this paper is to explore the influence of water content on the properties of alkali-activated binders mortar cured at −5 °C. Fly ash (FA) and ground granulated blast furnace slag (GGBFS) were used as binders. Three groups of experiments with different water content were carried out. The prepared samples were investigated through uniaxial compression strength test, Scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the determination of their compressive strength, microstructural features, phase, and composition. The results indicated that, the compressive strength of samples basically maintained 25.78 MPa–27.10 MPa at an age of 28 days; for 90 days, the values reached 33.4 MPa–34.04 MPa. The results showed that lower water content is beneficial to improving the early strength of mortar at −5 °C curing condition, while it has little impact on long-term strength. These results may provide references for the design and construction of geopolymer concrete in cold regions.

Author(s):  
Eslam Gomaa ◽  
Simon Sargon ◽  
Cedric Kashosi ◽  
Ahmed Gheni ◽  
Mohamed ElGawady

<p>The effect of the water to fly ash (W/FA), alkali activators to fly ash (Alk/FA), and curing regimes on the workability and compressive strength of the alkali-activated mortar (AAM) was studied. Three high calcium fly ashes (FAs) having different chemical compositions were used. Sodium hydroxide (SH) and sodium silicate (SS) were used as the alkali activators. The two alkali activators were mixed together at ratio of 1.0. Two curing regimes, elevated heat curing in an electric oven at 70°C for 24 hr and ambient curing at 23 ± 2°C, were applied. The water to fly ash (W/FA) ratios were 0.350, 0.375, and 0.400. However, the alkali activators to fly ash (Alk/FA) ratios were 0.250, 0.275 and 0.300. The results revealed that the workability and the compressive strength of the oven cured specimens were decreased with increasing the calcium content of FA in the mixture. However, the compressive strength of the specimens that cured under the ambient temperature increased with increasing the calcium content. The workability increased with increasing the W/FA and decreasing the Alk/FA. The compressive strength based on both curing regimes decreased with increasing the W/FA. The optimum Alk/FA was 0.275 with W/FA of 0.400.</p>


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4160
Author(s):  
Sani Haruna ◽  
Bashar S. Mohammed ◽  
Mubarak M. A. Wahab ◽  
Mubarak Usman Kankia ◽  
Mugahed Amran ◽  
...  

This research aims to study the effect of the dosage of anhydrous sodium metasilicate activator on the long-term properties of fly ash-based one-part alkali-activated binders (OPAAB) cured at ambient conditions. Powdered sodium metasilicate activator was utilized in the range of 8–16% by weight of the fly ash in producing the OPAAB. The properties examined are hardened density, compressive strength, flexural strength, water absorption, efflorescence formation, and microstructural analysis. The experimental result revealed that the binders exhibited excellent long-term strength properties. The compressive strength of the OPAAP is well correlated with its hardened density. The pastes were found to exhibit good soundness characteristics over the long-term. The absorption of water decreases with an increase in the activator dosage from 8–12%, and beyond that, the water absorption relatively remains the same. Field emission scanning electron microscope (FESEM) micrograph revealed uniformly formed solid matrices with the micro-crack present were observed in the samples. The larger pore size promotes the crystallization of the resulting hydrate substances (N, C)-A-S-H gel. The initial dissolution of the OPAAP occurred within the first 30 min. At longer age of curing, mixtures with a higher dosage of powdered activator tend to absorb less water. Strength properties beyond 28 days are considered as the long-term strength.


Author(s):  
Sasui Sasui ◽  
Gyuyong Kim ◽  
Jeongsoo Nam ◽  
Arie van Riessen ◽  
Marijana Hadzima-Nyarko

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1673 ◽  
Author(s):  
Hyeongmin Son ◽  
Sol Moi Park ◽  
Joon Ho Seo ◽  
Haeng Ki Lee

This present study investigates the effects of CaSO4 incorporation on the pore structure and drying shrinkage of alkali-activated slag and fly ash. The slag and fly ash were activated at a 5:5 ratio by weighing with a sodium silicate. Thereafter, 0%, 5%, 10%, and 15% of CaSO4 were incorporated to investigate the changes in phase formation and internal pore structure. X-Ray Diffraction (XRD), thermogravimetry (TG)/derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and drying shrinkage tests were carried out to find the correlation between the pore structure and drying shrinkage of the specimens. The results showed that CaSO4 incorporation increased the formation of thenardite, and these phase changes affected the pore structure of the activated fly ash and slag. The increase in the CaSO4 content increased the pore distribution in the mesopore. As a result, the capillary tension and drying shrinkage decreased.


2018 ◽  
Vol 199 ◽  
pp. 02025 ◽  
Author(s):  
Gregor J. G. Gluth ◽  
Petr Hlaváček ◽  
Steffi Reinemann ◽  
Gino Ebell ◽  
Jürgen Mietz

Alkali-activated fly ash mortars were studied with regard to durability-relevant transport coefficients and the electrochemical behaviour of embedded carbon steel bars on exposure of the mortars to leaching, carbonation and chloride penetration environments. The transport coefficients differed considerably between different formulations, being lowest for a mortar with BFS addition, but still acceptable for one of the purely fly ash-based mortars. Leaching over a period of ~300 days in de-ionized water did not lead to observable corrosion of the embedded steel, as shown by the electrochemical data and visual inspection of the steel. Exposure to 100 % CO2 atmosphere caused steel depassivation within approx. two weeks; in addition, indications of a deterioration of the mortar were observed. The results are discussed in the context of the different reaction products expected in highand low-Ca alkali-activated binders, and the alterations caused by leaching and carbonation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Zhang ◽  
Peixin Shi ◽  
Lijuan Chen ◽  
Qiang Tang

The electroplating sludge may pose serious threat to human health and surrounding environment without safe treatment. This paper investigated the feasibility of using electroplating sludge as subgrade backfill materials, by evaluating the mechanical properties and environmental risk of the cement-coal fly ash solidified sludge. In this study, Portland cement and coal fly ash are used to solidify/stabilize the sludge. After curing for 7, 14, and 28 days, the stabilization/solidification sludge specimens were subject to a series of mechanical, leaching, and microcosmic tests. It was found that the compressive strength increased with the increase of cement content, curing time, and the cement replacement by coal fly ash besides water content. Among these factors, the impact of water content on the compressive strength is most noticeable. It was observed that the compressive strength declined by 87.1% when the water content increased from 0% to 10%. Besides, leaching tests showed that the amount of leaching heavy metals were under the standard limit. These results demonstrated utilization of electroplating sludge in subgrade backfill material may provide an alternative for the treatment of electroplating sludge.


Sign in / Sign up

Export Citation Format

Share Document