Barium calcium titanate @carbon hybrid materials for high-efficiency room-temperature pyrocatalysis

Author(s):  
Huiying Wang ◽  
Yanmin Jia ◽  
Taosheng Xu ◽  
Xiaoxin Shu ◽  
Yiming He ◽  
...  
2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2006 ◽  
Vol 89 (24) ◽  
pp. 243510 ◽  
Author(s):  
M. Lorenz ◽  
R. Johne ◽  
T. Nobis ◽  
H. Hochmuth ◽  
J. Lenzner ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 01010
Author(s):  
Alfonsina Abat Amelenan Torimtubun ◽  
Anniza Cornelia Augusty ◽  
Eka Maulana ◽  
Lusi Ernawati

Indonesia is located along the equator lines with the high intensity of solar radiation averaging about 4.5 kWh of electrical energy/day. This potential leads to the selfsustaining energy possibility fulfilling the electricity needs. Due to their unique electronic structures and high-cost merit over the existing commercial PV technologies, perovskite solar cells (PSCs) have emerged as the next-generation photovoltaic candidate. Their highest power efficiency can be achieved of up to 22.1% in the last 5-6 years. However, this high efficiency came from CH3NH3PbI3 materials which contain lead, a toxic material. Herein calcium titanate (CT) as a lead-free perovskite material were synthesized through sintering of calcium carbonate (CaCO3) and titanium oxide (TiO2) by the sol-gel method. CT powders were characterized by SEM, XRF, FTIR and XRD then applied it onto the mesoporous heterojunction PSCs, with a device architecture ITO/TiO2/CaTiO3/C/ITO. By manipulating the raw material stoichiometry and heating temperature in the synthesis of CaTiO3, the device shows the highest power conversion efficiency (PCE) of 2.12%, shortcircuit current density (JSC) of 0.027 mA cm-2, open circuit voltage (VOC) of 0.212 V and fill factor (FF) of 53.90%. This sample can be an alternative way to create lead-free, largescale, and low-cost perovskite solar cells.


Synthesis ◽  
2022 ◽  
Author(s):  
Yu Tang ◽  
Biao Yu

A mild heteroatom methylation protocol using trimethyl phosphate (TMP)-Ca(OH)2 combination has been developed, which proceeds in DMF, or water, or under neat conditions at 80 oC or at room temperature. A series of O-, N- and S-nucleophiles, including phenols, sulfonamides, N-heterocycles such as 9H-carbazole, indole derivatives, 1,8-naphthalimide, and aryl/alkyl thiols are suitable substrates of this protocol. The high efficiency, operational simplicity, scalability, cost-efficiency, and environmental friendly nature of this protocol make it an attractive alternative to the conventional base prompted heteroatom methylation procedures.


2020 ◽  
Vol 13 (4) ◽  
pp. 043006 ◽  
Author(s):  
Anke Song ◽  
Jiajun Chen ◽  
Jinshen Lan ◽  
Deyi Fu ◽  
Jiangpeng Zhou ◽  
...  

2020 ◽  
Vol 26 (8) ◽  
pp. 696-705
Author(s):  
Xu Zhang ◽  
Juan Wu ◽  
Chuanshan Xu ◽  
Na Lu ◽  
Yuan Gao ◽  
...  

In this study, the disinfection effect of curcumin-mediated photodynamic therapy on the contact surfaces of fresh fruit was investigated. Our results showed that the optimum concentration of curcumin and the energy density required were 0.5 μM and 7.2 J/cm2, respectively. Photodynamic therapy showed an excellent disinfection rate for the fresh fruits with a reduction of more than 80% in the total bacteria and coliform counts. The photodynamic therapy inhibited species that belonged to the categories of gram-negative and facultative anaerobic bacteria, except for two species of the Trichoderma fungus. Importantly, photodynamic therapy prolonged the shelf-life of grapes for two days at room temperature. Therefore, photodynamic therapy should be commercialized as a high efficiency and non-thermal sterilization technology for use in the food industry.


1966 ◽  
Vol 21 (12) ◽  
pp. 1165-1170 ◽  
Author(s):  
H. Jung

Slow protons having energies below 1.5 keV dissipate their kinetic energy in matter through elastic nuclear collisions. By this process atoms are displaced out from their original positions in macromolecules. This was recently shown to cause biological damage with high efficiency. Experiments are described to test the possibility of modifying the sensitivity of ribonuclease towards elastic collisions by protective agents and by low temperatures. When cystamine is present during irradiation dry ribonuclease is protected against the action of “ionizing” fast protons (2 MeV), the dose reduction factor being 1.8. But no protection is observed when inactivation is achieved by elastic nuclear collisions (proton energy 1 keV and 1.4 keV). Similar results were obtained when the irradiations were carried out at different temperatures. Using 2 MeV protons the radiosensitivity of ribonuclease was found to be 3 times higher at room temperature than at 125 °K, but when using slow protons of 1.4 keV energy the inactivation cross section turned out to be independent of temperature. This shows that the action of elastic nuclear collisions can be modified neither by cystamine nor by low temperatures.


2010 ◽  
Vol 22 (24) ◽  
pp. 1811-1813 ◽  
Author(s):  
H. Li ◽  
Simeon Katz ◽  
Augustinas Vizbaras ◽  
Gehard Boehm ◽  
Markus-Christian Amann

Sign in / Sign up

Export Citation Format

Share Document