In situ catalyst activity control in a novel membrane reactor—Reaction driven wireless electrochemical promotion of catalysis

2010 ◽  
Vol 65 (1) ◽  
pp. 446-450 ◽  
Author(s):  
D. Poulidi ◽  
I.S. Metcalfe
Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1276
Author(s):  
Angel Caravaca ◽  
Jesús González-Cobos ◽  
Philippe Vernoux

The phenomenon of “Non-Faradaic Electrochemical Modification of Catalytic Activity (NEMCA)” or “Electrochemical Promotion of Catalysis (EPOC)” has been extensively studied for the last decades. Its main strength, with respect to conventionally promoted catalytic systems, is its capability to modify in-situ the activity and/or selectivity of a catalyst by controlling the supply and removal of promoters upon electrical polarization. Previous reviews have summarized the main achievements in this field from both the scientific and technological points of view. However, to this date no commercial application of the EPOC phenomenon has been developed, although numerous advances have been made on the application of EPOC on catalyst nanostructures (closer to those employed in conventional catalytic systems), and on the development of scaled-up reactors suitable for EPOC application. The main bottleneck for EPOC commercialization is likely the choice of the right chemical process. Therefore, from our point of view, future efforts should focus on coupling the latest EPOC advances with the chemical processes where the EPOC phenomenon offers a competitive advantage, either from an environmental, a practical or an economic point of view. In this article, we discuss some of the most promising cases published to date and suggest future improvement strategies. The considered processes are: (i) ethylene epoxidation with environmentally friendly promoters, (ii) NOx storage and reduction under constant reaction atmosphere, (iii) CH4 steam reforming with in-situ catalyst regeneration, (iv) H2 production, storage and release under fixed temperature and pressure, and (v) EPOC-enhanced electrolysers.


2018 ◽  
Vol 358 ◽  
pp. 27-34 ◽  
Author(s):  
J.P. Espinós ◽  
V.J. Rico ◽  
J. González-Cobos ◽  
J.R. Sánchez-Valencia ◽  
V. Pérez-Dieste ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Yuanqing Liu ◽  
Chau T. Q. Mai ◽  
Flora T. T. Ng

The glycerol hydrogenolysis to produce 1,2-propanediol without using externally supplied hydrogen was investigated using methanol present in crude glycerol to provide in situ hydrogen via its steam reforming reaction. This paper focuses on the promoting effect of Pd on the reactivity of a Cu/Zn/Al2O3 catalyst. Adding 2 wt% Pd onto a Cu/ZnO/Al2O3 catalyst significantly improved the selectivity to 1,2-propanediol from 63.0% to 82.4% and the glycerol conversion from 70.2% to 99.4%. This enhancement on the catalytic activity by Pd is mainly due to the improved hydrogenation of acetol, which is the intermediate formed during the glycerol dehydration. The rapid hydrogenation of acetol can shift the reaction equilibrium of glycerol dehydration forward resulting in a higher glycerol conversion. The improved reducibility of the catalyst by Pd allows the catalyst to be reduced in situ during the reaction preventing any loss of catalyst activity due to any potential oxidation of the catalyst. The catalyst was slightly deactivated when it was firstly recycled resulting in a 5.4% loss of glycerol conversion due to the aggregation of Cu and the deactivation became less noticeable upon further recycling.


2022 ◽  
Vol 9 ◽  
Author(s):  
Sichao Cheng ◽  
Su Cheun Oh ◽  
Mann Sakbodin ◽  
Limei Qiu ◽  
Yuxia Diao ◽  
...  

Direct non-oxidative methane conversion (DNMC) converts methane (CH4) in one step to olefin and aromatic hydrocarbons and hydrogen (H2) co-product. Membrane reactors comprising methane activation catalysts and H2-permeable membranes can enhance methane conversion by in situ H2 removal via Le Chatelier's principle. Rigorous description of H2 kinetic effects on both membrane and catalyst materials in the membrane reactor, however, has been rarely studied. In this work, we report the impact of hydrogen activation by hydrogen-permeable SrCe0.8Zr0.2O3−δ (SCZO) perovskite oxide material on DNMC over an iron/silica catalyst. The SCZO oxide has mixed ionic and electronic conductivity and is capable of H2 activation into protons and electrons for H2 permeation. In the fixed-bed reactor packed with a mixture of SCZO oxide and iron/silica catalyst, stable and high methane conversion and low coke selectivity in DNMC was achieved by co-feeding of H2 in methane stream. The characterizations show that SCZO activates H2 to favor “soft coke” formation on the catalyst. The SCZO could absorb H2in situ to lower its local concentration to mitigate the reverse reaction of DNMC in the tested conditions. The co-existence of H2 co-feed, SCZO oxide, and DNMC catalyst in the present study mimics the conditions of DNMC in the H2-permeable SCZO membrane reactor. The findings in this work offer the mechanistic understanding of and guidance for the design of H2-permeable membrane reactors for DNMC and other alkane dehydrogenation reactions.


2019 ◽  
Vol 210 ◽  
pp. 115250 ◽  
Author(s):  
J.A. Fabián-Anguiano ◽  
C.G. Mendoza-Serrato ◽  
C. Gómez-Yáñez ◽  
B. Zeifert ◽  
Xiaoli Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document