Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor

2010 ◽  
Vol 65 (15) ◽  
pp. 4307-4322 ◽  
Author(s):  
N. Lamarque ◽  
B. Zoppé ◽  
O. Lebaigue ◽  
Y. Dolias ◽  
M. Bertrand ◽  
...  
AIChE Journal ◽  
2008 ◽  
Vol 54 (3) ◽  
pp. 766-778 ◽  
Author(s):  
Debangshu Guha ◽  
P. A. Ramachandran ◽  
M. P. Dudukovic ◽  
J. J. Derksen

Author(s):  
Zhihua Xie ◽  
Binliang Lin ◽  
Roger A. Falconer ◽  
Andrew Nichols ◽  
Simon J. Tait ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3036
Author(s):  
Le Thi Thu Hien ◽  
Duong Hoai Duc

Spillways and channel chutes are widely used in hydraulic works. Two kinds of abutment—walls and steps—are usually constructed to dissipate energy; however, they may also cause cavitation at the abutment position. In this study, we used Flow 3D with the Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) turbulent models which included air entrainment to simulate the free surface flow through the spillway, channel chute and stilling basin of the Ngan Truoi construction to optimize the configuration of walls and dams. We measured the water level, velocity and pressure to estimate the influence of grid size and the turbulent model type used. Our results highlight the need to include air entrainment in the model simulating rapid flow over a hydraulic construction. With adjustments for energy loss, this study shows that walls provide the best results and the optimal distance between two walls is 2.8 m.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 597 ◽  
Author(s):  
Lu Yang ◽  
Zhenna Zhu ◽  
Xin Qi ◽  
Xiaokang Yan ◽  
Haijun Zhang

Pulp preconditioning using a stirred tank as a pretreatment process is vital to the flotation system, which can be used to improve the flotation efficiency of mineral particles. The kinetic energy that is dissipated in the stirred tank could strengthen the interaction process between mineral particles and flotation reagents to improve the flotation efficiency in the presence of the preconditioning. In this paper, the effect of the conditioning speed on the coal fly ash flotation was investigated using numerical simulations and conditioning-flotation tests. The large eddy simulation coupled with the Smagorinsky-Lilly subgrid model was employed to simulate the turbulence flow field in the stirred tank, which was equipped with a six blade Rushton turbine. The impeller rotation was modelled using the sliding mesh. The simulation results showed that the large eddy simulation (LES) well matched the previous experimental data. The turbulence characteristics, such as the mean velocity, turbulent kinetic energy, power consumption and instantaneous structures of trailing vortices were analysed in detail. The turbulent length scale (η) decreased as the rotation speed increased, and the minimum value of η was almost unchanged when the rotation speed was more than 1200 rpm. The conditioning-flotation tests of coal fly ash were conducted using different conditioning speeds. The results showed that the removal of unburned carbon was greatly improved due to the strengthened turbulence in the stirred tank, and the optimal results were obtained with an LOI of 3.32%, a yield of 78.69% and an RUC of 80.89% when the conditioning speed was 1200 rpm.


1997 ◽  
Vol 9 (8) ◽  
pp. 2405-2419 ◽  
Author(s):  
M. V. Salvetti ◽  
Y. Zang ◽  
R. L. Street ◽  
S. Banerjee

2001 ◽  
Vol 440 ◽  
pp. 75-116 ◽  
Author(s):  
LIAN SHEN ◽  
DICK K. P. YUE

In this paper we investigate the large-eddy simulation (LES) of the interaction between a turbulent shear flow and a free surface at low Froude numbers. The benchmark flow field is first solved by using direct numerical simulations (DNS) of the Navier–Stokes equations at fine (1282 × 192 grid) resolution, while the LES is performed at coarse resolution. Analysis of the ensemble of 25 DNS datasets shows that the amount of energy transferred from the grid scales to the subgrid scales (SGS) reduces significantly as the free surface is approached. This is a result of energy backscatter associated with the fluid vertical motions. Conditional averaging reveals that the energy backscatter occurs at the splat regions of coherent hairpin vortex structures as they connect to the free surface. The free-surface region is highly anisotropic at all length scales while the energy backscatter is carried out by the horizontal components of the SGS stress only. The physical insights obtained here are essential to the efficacious SGS modelling of LES for free-surface turbulence. In the LES, the SGS contribution to the Dirichlet pressure free-surface boundary condition is modelled with a dynamic form of the Yoshizawa (1986) expression, while the SGS flux that appears in the kinematic boundary condition is modelled by a dynamic scale-similarity model. For the SGS stress, we first examine the existing dynamic Smagorinsky model (DSM), which is found to capture the free-surface turbulence structure only roughly. Based on the special physics of free-surface turbulence, we propose two new SGS models: a dynamic free-surface function model (DFFM) and a dynamic anisotropic selective model (DASM). The DFFM correctly represents the reduction of the Smagorinsky coefficient near the surface and is found to capture the surface layer more accurately. The DASM takes into account both the anisotropy nature of free-surface turbulence and the dependence of energy backscatter on specific coherent vorticity mechanisms, and is found to produce substantially better surface signature statistics. Finally, we show that the combination of the new DFFM and DASM with a dynamic scale-similarity model further improves the results.


Sign in / Sign up

Export Citation Format

Share Document