Simulation and Prediction Study of Hydrogenation/Dehydrogenation Kinetics Based on the Universal Changing-Volume Model

2022 ◽  
pp. 117428
Author(s):  
Feng Wang ◽  
Zhuonan Huang ◽  
Yuqi Wang ◽  
Di Wang ◽  
Lan Zheng ◽  
...  
2021 ◽  
Vol 11 (11) ◽  
pp. 4999
Author(s):  
Chung-Yoh Kim ◽  
Jin-Seo Park ◽  
Beom-Sun Chung

When performing deep brain stimulation (DBS) of the subthalamic nucleus, practitioners should interpret the magnetic resonance images (MRI) correctly so they can place the DBS electrode accurately at the target without damaging the other structures. The aim of this study is to provide a real color volume model of a cadaver head that would help medical students and practitioners to better understand the sectional anatomy of DBS surgery. Sectioned images of a cadaver head were reconstructed into a real color volume model with a voxel size of 0.5 mm × 0.5 mm × 0.5 mm. According to preoperative MRIs and postoperative computed tomographys (CT) of 31 patients, a virtual DBS electrode was rendered on the volume model of a cadaver. The volume model was sectioned at the classical and oblique planes to produce real color images. In addition, segmented images of a cadaver head were formed into volume models. On the classical and oblique planes, the anatomical structures around the course of the DBS electrode were identified. The entry point, waypoint, target point, and nearby structures where the DBS electrode could be misplaced were also elucidated. The oblique planes could be understood concretely by comparing the volume model of the sectioned images with that of the segmented images. The real color and high resolution of the volume model enabled observations of minute structures even on the oblique planes. The volume models can be downloaded by users to be correlated with other patients’ data for grasping the anatomical orientation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Vincenzo Petrone ◽  
Adolfo Senatore ◽  
Vincenzo D'Agostino

This paper presents the application of an improved Yasutomi correlation for lubricant viscosity at high pressure in a Newtonian elastohydrodynamic line contact simulation. According to recent experimental studies using high pressure viscometers, the Yasutomi pressure-viscosity relationship derived from the free-volume model closely represents the real lubricant piezoviscous behavior for the high pressure typically encountered in elastohydrodynamic applications. However, the original Yasutomi correlation suffers from the appearance of a zero in the function describing the pressure dependence of the relative free volume thermal expansivity. In order to overcome this drawback, a new formulation of the Yasutomi relation was recently developed by Bair et al. This new function removes these concerns and provides improved precision without the need for an equation of state. Numerical simulations have been performed using the improved Yasutomi model to predict the lubricant pressure-viscosity, the pressure distribution, and the film thickness behavior in a Newtonian EHL simulation of a squalane-lubricated line contact. This work also shows that this model yields a higher viscosity at the low-pressure area, which results in a larger central film thickness compared with the previous piezoviscous relations.


1969 ◽  
Vol 28 (11) ◽  
pp. 760-761 ◽  
Author(s):  
B.V. Thosar ◽  
V.G. Kulkarni ◽  
R.G. Lagu ◽  
Girish Chandra

Sign in / Sign up

Export Citation Format

Share Document