dehydrogenation kinetics
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 22)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
pp. 117428
Author(s):  
Feng Wang ◽  
Zhuonan Huang ◽  
Yuqi Wang ◽  
Di Wang ◽  
Lan Zheng ◽  
...  

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhuanghe Ren ◽  
Xin Zhang ◽  
Hai-Wen Li ◽  
Zhenguo Huang ◽  
Jianjiang Hu ◽  
...  

Sodium alanate (NaAlH4) with 5.6 wt% of hydrogen capacity suffers seriously from the sluggish kinetics for reversible hydrogen storage. Ti-based dopants such as TiCl4, TiCl3, TiF3, and TiO2 are prominent in enhancing the dehydrogenation kinetics and hence reducing the operation temperature. The tradeoff, however, is a considerable decrease of the reversible hydrogen capacity, which largely lowers the practical value of NaAlH4. Here, we successfully synthesized a new Ti-dopant, i.e., TiH2 as nanoplates with ~50 nm in lateral size and ~15 nm in thickness by an ultrasound-driven metathesis reaction between TiCl4 and LiH in THF with graphene as supports (denoted as NP-TiH2@G). Doping of 7 wt% NP-TiH2@G enables a full dehydrogenation of NaAlH4 at 80°C and rehydrogenation at 30°C under 100 atm H2 with a reversible hydrogen capacity of 5 wt%, superior to all literature results reported so far. This indicates that nanostructured TiH2 is much more effective than Ti-dopants in improving the hydrogen storage performance of NaAlH4. Our finding not only pushes the practical application of NaAlH4 forward greatly but also opens up new opportunities to tailor the kinetics with the minimal capacity loss.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7853
Author(s):  
Thi-Thu Le ◽  
Claudio Pistidda ◽  
Julián Puszkiel ◽  
María Victoria Castro Riglos ◽  
David Michael Dreistadt ◽  
...  

In recent years, the use of selected additives for improving the kinetic behavior of the system 2LiH + MgB2 (Li-RHC) has been investigated. As a result, it has been reported that some additives (e.g., 3TiCl3·AlCl3), by reacting with the Li-RHC components, form nanostructured phases (e.g., AlTi3) possessing peculiar microstructural properties capable of enhancing the system’s kinetic behavior. The effect of in-house-produced AlTi3 nanoparticles on the hydrogenation/dehydrogenation kinetics of the 2LiH + MgB2 (Li-RHC) system is explored in this work, with the aim of reaching high hydrogen storage performance. Experimental results show that the AlTi3 nanoparticles significantly improve the reaction rate of the Li-RHC system, mainly for the dehydrogenation process. The observed improvement is most likely due to the similar structural properties between AlTi3 and MgB2 phases which provide an energetically favored path for the nucleation of MgB2. In comparison with the pristine material, the Li-RHC doped with AlTi3 nanoparticles has about a nine times faster dehydrogenation rate. The results obtained from the kinetic modeling indicate a change in the Li-RHC hydrogenation reaction mechanism in the presence of AlTi3 nanoparticles.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ze Zhang ◽  
Yuanding Wang ◽  
Haoming Wang ◽  
Xiang Xue ◽  
Qingguo Lin

Hydrogen is regarded as a promising solution to fulfill the energy demand of Mars human base in the future. Through in-situ resource utilization (ISRU) on Mars, the composite of metal-organic frameworks (MOFs) and magnesium hydride which demonstrates synergistic effect of physi- and chemisorption has been proposed to be an attractive approach for long-term hydrogen storage. MOFs may act either as scaffolds to confine Mg nanoparticles or as catalysts/precursors to lower the energy barrier for hydrogen dissociation on Mg surfaces. The corresponding mechanisms for faster hydrogenation/dehydrogenation kinetics and lower operation temperature were further discussed and analyzed.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4962
Author(s):  
Mohamed Sherif El-Eskandarany ◽  
Naser Ali ◽  
Fahad Al-Ajmi ◽  
Mohammad Banyan

Hydrogen has been receiving great attention as an energy carrier for potential green energy applications. Hydrogen storage is one of the most crucial factors controlling the hydrogen economy and its future applications. Amongst the several options of hydrogen storage, light metal hydrides, particularly nanocrystalline magnesium hydride (MgH2), possess attractive properties, making them desired hydrogen storage materials. The present study aimed to improve the hydrogen storage properties of MgH2 upon doping with different concentrations of zirconium carbide (ZrC) nanopowders. Both MgH2 and ZrC were prepared using reactive ball milling and high-energy ball milling techniques, respectively. The as-prepared MgH2 powder was doped with ZrC (2, 5, and 7 wt%) and then high-energy-ball-milled for 25 h. During the ball milling process, ZrC powders acted as micro-milling media to reduce the MgH2 particle size to a minimal value that could not be obtained without ZrC. The as-milled nanocomposite MgH2/ZrC powders consisted of fine particles (~0.25 μm) with a nanosized grain structure of less than 7 nm. Besides, the ZrC agent led to the lowering of the decomposition temperature of MgH2 to 287 °C and the reduction in its apparent activation energy of desorption to 69 kJ/mol. Moreover, the hydrogenation/dehydrogenation kinetics of the nanocomposite MgH2/ZrC system revealed a significant improvement, as indicated by the low temperature and short time required to achieve successful uptake and release processes. This system possessed a high capability to tackle a long continuous cycle lifetime (1400 h) at low temperatures (225 °C) without showing serious degradation in its storage capacity.


ACS Catalysis ◽  
2021 ◽  
pp. 9279-9292
Author(s):  
Zan Lian ◽  
Chaowei Si ◽  
Faheem Jan ◽  
ShuaiKe Zhi ◽  
Bo Li

Author(s):  
Sophida Thiangviriya ◽  
Praphatsorn Plerdsranoy ◽  
Annbritt Hagenah ◽  
Thi Thu Le ◽  
Pinit Kidkhunthod ◽  
...  

2021 ◽  
pp. 100086
Author(s):  
Shashi Sharma ◽  
Fangqin Guo ◽  
Takayuki Ichikawa ◽  
Yoshitsugu Kojima ◽  
Ankur Jain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document