Theme and sentiment analysis model of public opinion dissemination based on generative adversarial network

2019 ◽  
Vol 121 ◽  
pp. 160-167 ◽  
Author(s):  
E. Haihong ◽  
Hu Yingxi ◽  
Peng Haipeng ◽  
Zhao Wen ◽  
Xiao Siqi ◽  
...  
Author(s):  
Changshun Du ◽  
Lei Huang

Text sentiment analysis is one of the most important tasks in the field of public opinion monitoring, service evaluation and satisfaction analysis under network environments. Compared with the traditional Natural Language Processing analysis tools, convolution neural networks can automatically learn useful features from sentences and improve the performance of the affective analysis model. However, the original convolution neural network model ignores sentence structure information which is very important for text sentiment analysis. In this paper, we add piece-wise pooling to the convolution neural network, which allows the model to obtain the sentence structure. And the main features of different sentences are extracted to analyze the emotional tendencies of the text. At the same time, the user’s feedback involves many different fields, and there is less labeled data. In order to alleviate the sparsity of the data, this paper also uses the generative adversarial network to make common feature extractions, so that the model can obtain the common features associated with emotions in different fields, and improves the model’s Generalization ability with less training data. Experiments on different datasets demonstrate the effectiveness of this method.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2921
Author(s):  
Xiaolin Li ◽  
Zhiyi Li ◽  
Yahe Tian

With the advent of the new media mobile Internet era, the network public opinion in colleges and universities, as an extension of social network public opinion, is also facing a crisis in the prevention, control, and governance system. In this paper, the Fiddler was used to collect the comments and other relevant data of the COVID-19 topic articles on the WeChat Official Accounts of China’s top ten universities in 2020. The BILSTM_LSTM sentiment analysis model was used to analyze the sentiment tendency of the comments, and the LDA topic model was used to mine the topics of the comments with different emotional attributes at different stages of COVID-19. Based on sentiment analysis and text mining, entities and relationships in the theme graph of public opinion events in colleges and universities were identified, and the Neo4j graph database was established to construct the sentimental knowledge graph of the pandemic theme of university public accounts. People’s attitudes in university public opinion are easily influenced by a variety of factors, and the degree of emotional disposition changes over time, with the stage the pandemic is in, and with different commentators; official account opinion topics change with the development of the time stage of the pandemic, and students’ positive and negative comment topics show a diverse trend. By incorporating topic mining into the sentimental knowledge graph, the graph can realize functions such as the emotion retrieval of comments on university public numbers, a source search of security threats in university social networks, and monitoring of comments on public opinion under the theme of the pandemic, which provides new ideas for further exploring the research and governance system of university network public opinion and is conducive to preventing and resolving campus public opinion crises.


2021 ◽  
Author(s):  
Cristóbal Colón-Ruiz

<div>Sentiment analysis has become a very popular research topic and covers a wide range of domains such as economy, politics and health. In the pharmaceutical field, automated analysis of online user reviews provides information on the effectiveness and potential side effects of drugs, which could be used to improve pharmacovigilance systems. Deep learning approaches have revolutionized the field of Natural Language Processing (NLP), achieving state-of-the-art results in many tasks, such as sentiment analysis.</div><div>These methods require large annotated datasets to train their models. However, in most real-world scenarios, obtaining high-quality labeled datasets is an expensive and time-consuming task. In contrast, unlabeled texts task can be, generally, easily obtained. </div><div>In this work, we propose a semi-supervised approach based on a Semi-Supervised Generative Adversarial Network (SSGAN) to address the lack of labeled data for the sentiment analysis of drug reviews, and improve the results provided by supervised approaches in this task.</div><div>To evaluate the real contribution of this approach, we present a benchmark comparison between our semi-supervised approach and a supervised approach, which uses a similar architecture but without the generative adversal setting. </div><div>Experimental results show better performance of the semi-supervised approach when annotated reviews are less than ten percent of the training set, obtaining a significant improvement for the classification of neutral reviews, the class with least examples. To the best of our knowledge, this is the first study that applies a SSGAN to the sentiment classification of drug reviews. Our semi-supervised approach provides promising results for dealing with the shortage of annotated dataset, but there is still much room to improvement.</div>


2021 ◽  
Author(s):  
Cristóbal Colón-Ruiz

<div>Sentiment analysis has become a very popular research topic and covers a wide range of domains such as economy, politics and health. In the pharmaceutical field, automated analysis of online user reviews provides information on the effectiveness and potential side effects of drugs, which could be used to improve pharmacovigilance systems. Deep learning approaches have revolutionized the field of Natural Language Processing (NLP), achieving state-of-the-art results in many tasks, such as sentiment analysis.</div><div>These methods require large annotated datasets to train their models. However, in most real-world scenarios, obtaining high-quality labeled datasets is an expensive and time-consuming task. In contrast, unlabeled texts task can be, generally, easily obtained. </div><div>In this work, we propose a semi-supervised approach based on a Semi-Supervised Generative Adversarial Network (SSGAN) to address the lack of labeled data for the sentiment analysis of drug reviews, and improve the results provided by supervised approaches in this task.</div><div>To evaluate the real contribution of this approach, we present a benchmark comparison between our semi-supervised approach and a supervised approach, which uses a similar architecture but without the generative adversal setting. </div><div>Experimental results show better performance of the semi-supervised approach when annotated reviews are less than ten percent of the training set, obtaining a significant improvement for the classification of neutral reviews, the class with least examples. To the best of our knowledge, this is the first study that applies a SSGAN to the sentiment classification of drug reviews. Our semi-supervised approach provides promising results for dealing with the shortage of annotated dataset, but there is still much room to improvement.</div>


2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Author(s):  
Annapoorani Gopal ◽  
Lathaselvi Gandhimaruthian ◽  
Javid Ali

The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.


2019 ◽  
Vol 52 (21) ◽  
pp. 291-296 ◽  
Author(s):  
Minsung Sung ◽  
Jason Kim ◽  
Juhwan Kim ◽  
Son-Cheol Yu

Sign in / Sign up

Export Citation Format

Share Document