On three-dimensional variable order time fractional chaotic system with nonsingular kernel

2020 ◽  
Vol 133 ◽  
pp. 109628 ◽  
Author(s):  
M.S. Hashemi ◽  
Mustafa Inc ◽  
Abdullahi Yusuf
Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jiezhi Wang ◽  
Qing Zhang ◽  
Zengqiang Chen ◽  
Hang Li

Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D) chaotic system are proposed. To this chaotic system, the linear coefficient of theith state variable in theith state equation has the same sign; it also has two one-order terms and one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the feasibility of the designed scheme.


2005 ◽  
Vol 16 (05) ◽  
pp. 815-826 ◽  
Author(s):  
HONGBIN ZHANG ◽  
CHUNGUANG LI ◽  
GUANRONG CHEN ◽  
XING GAO

Recently, a new hyperchaos generator, obtained by controlling a three-dimensional autonomous chaotic system — Chen's system — with a periodic driving signal, has been found. In this letter, we formulate and study the hyperchaotic behaviors in the corresponding fractional-order hyperchaotic Chen's system. Through numerical simulations, we found that hyperchaos exists in the fractional-order hyperchaotic Chen's system with order less than 4. The lowest order we found to have hyperchaos in this system is 3.4. Finally, we study the synchronization problem of two fractional-order hyperchaotic Chen's systems.


Sign in / Sign up

Export Citation Format

Share Document