Comment on “Maximilian Hansen, Denis Scholz, Bernd R. Schöne, Christoph Spötl, Simulating speleothem growth in the laboratory: Determination of the stable isotope fractionation (δ13C and δ18O) between H2O, DIC and CaCO3” Chemical Geology 509 (2019) 20–44

2020 ◽  
Vol 533 ◽  
pp. 119236
Author(s):  
Wolfgang Dreybrodt
2017 ◽  
Vol 18 (3) ◽  
pp. 984-993 ◽  
Author(s):  
Shucong Zhen ◽  
Wei Zhu

Abstract Stable isotope fractionation of carbon and nitrogen in algal cells can be affected by photosynthesis, temperature, nutrient and CO2 concentrations, and cell size. As a consequence, carbon and nitrogen stable isotope techniques are not popular for determining algal growth rates. To counter these issues, this study used BG11 medium to cultivate Microcystis in the laboratory. First, the carbon and nitrogen stable isotope values of the culture medium and the algae are determined. Then, based on changes in isotope fractionation before and after cell division, a function μ = 1.32(1 + x)−0.52 relating growth rate and stable isotope fractionation is established. By substituting stable isotope values from Taihu Lake water and Microcystis into this function, the growth rate of the Microcystis in Taihu Lake is calculated to be 0.64 d−1 in May and 0.12 d−1 in September, with an average growth rate of 0.42 d−1. By incorporating most of the above-mentioned factors influencing isotope fractionation, this method can determine the growth rate of algae based directly on the stable isotope fractionation relationship, enabling simple and practical determination of algae growth rates.


2021 ◽  
Author(s):  
Andrea Watzinger ◽  
Melanie Hager ◽  
Thomas Reichenauer ◽  
Gerhard Soja ◽  
Paul Kinner

AbstractMaintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g−1 day−1) than in the expanded clay (1.0 µg CO2 g−1 day−1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072–1.500) and apparent decane biodegradation rates (k = − 0.017 to − 0.067 day−1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.


Pedobiologia ◽  
2005 ◽  
Vol 49 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Dominique Haubert ◽  
Reinhard Langel ◽  
Stefan Scheu ◽  
Liliane Ruess

2011 ◽  
Vol 75 (19) ◽  
pp. 5797-5818 ◽  
Author(s):  
F. Wombacher ◽  
A. Eisenhauer ◽  
F. Böhm ◽  
N. Gussone ◽  
M. Regenberg ◽  
...  

2016 ◽  
Vol 50 (11) ◽  
pp. 5729-5739 ◽  
Author(s):  
Heide K. V. Schürner ◽  
Michael P. Maier ◽  
Dominik Eckert ◽  
Ramona Brejcha ◽  
Claudia-Constanze Neumann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document