scholarly journals Combined Hf and Nd isotope microanalysis of co-existing zircon and REE-rich accessory minerals: High resolution insights into crustal processes

2021 ◽  
pp. 120393
Author(s):  
Johannes Hammerli ◽  
Tony I.S. Kemp
2020 ◽  
Author(s):  
Johannes Hammerli

<p>The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth’s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth’s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.</p><p> </p><p>[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL</p>


2018 ◽  
Vol 484 ◽  
pp. 120-135 ◽  
Author(s):  
Emilie Janots ◽  
Håkon Austrheim ◽  
Carl Spandler ◽  
Johannes Hammerli ◽  
Claudia A. Trepmann ◽  
...  

2009 ◽  
Vol 260 (1-2) ◽  
pp. 73-86 ◽  
Author(s):  
Courtney J. Gregory ◽  
Christopher R.M. McFarlane ◽  
Jörg Hermann ◽  
Daniela Rubatto

Author(s):  
Da Wang ◽  
Steven B. Shirey ◽  
Richard W. Carlson ◽  
Christopher M. Fisher ◽  
Anthony I.S. Kemp ◽  
...  

1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


2019 ◽  
Vol 42 ◽  
Author(s):  
J. Alfredo Blakeley-Ruiz ◽  
Carlee S. McClintock ◽  
Ralph Lydic ◽  
Helen A. Baghdoyan ◽  
James J. Choo ◽  
...  

Abstract The Hooks et al. review of microbiota-gut-brain (MGB) literature provides a constructive criticism of the general approaches encompassing MGB research. This commentary extends their review by: (a) highlighting capabilities of advanced systems-biology “-omics” techniques for microbiome research and (b) recommending that combining these high-resolution techniques with intervention-based experimental design may be the path forward for future MGB research.


Sign in / Sign up

Export Citation Format

Share Document