Understanding the role of accessory minerals in the Sm-Nd isotopic evolution of ancient rocks: An in-situ LA-(MC)-ICP-MS approach

Author(s):  
Johannes Hammerli

<p>The long-lived radiogenic isotope systems Lu-Hf and Sm-Nd have been widely used by geochemists to study magma sources and crustal residential times of (igneous) rocks in order to understand how early crust formed and to model the production rate and volume of continental crust on global and regional-scales during the last ~4.4 Ga. However, while throughout most of Earth’s history Nd and Hf isotope signatures in terrestrial rocks are well correlated due to their very similar geochemical behavior, some of Earth’s oldest rocks show an apparent inconsistency in their Nd and Hf isotope signatures. While Hf isotopes in early Archean rocks are generally (near) chondritic, Nd isotope signatures can be distinctly super- or sub-chondritic. The super-chondritic Nd isotope values in Eoarchean samples would suggest that these rocks are derived from a mantle reservoir depleted by prior crust extraction. The chondritic Hf isotope values, on the other hand, support a mantle source from which no significant volume of crust had been extracted. While a range of different processes, some of them speculative, might explain this Hf-Nd isotope paradox, recent research [1, 2] has shown that relatively simple, post-magmatic, open-system processes can explain decoupling of the typically correlative Hf-Nd isotope signatures. This talk will focus on the importance of identifying Nd-bearing accessory minerals in (Archean) rocks to understand how the Sm-Nd isotope system is controlled and how in situ isotope and trace element analyses by LA-(MC)-ICP-MS in combination with detailed petrographic observations help to understand when and via which processes the two isotope systems become decoupled. Reconstructing the isotopic evolution of the different isotope systems since formation of the protoliths has important implications for our understanding of early crust formation and questions some of the proposed current models for early crust extraction from the mantle.</p><p> </p><p>[1] Hammerli et al. (2019) Chem. Geol 2; [2] Fisher et al. (2020) EPSL</p>

2020 ◽  
Author(s):  
Jeff Vervoort ◽  
Chris Fisher ◽  
Ross Salerno

<p>One of the fundamental tenets of geochemistry is that the Earth’s crust has been extracted from the mantle creating a crustal reservoir enriched—and a mantle depleted—in incompatible elements. The Hf-Nd isotope record has long been used to help understand the timing of this process. Increasingly, however, it has become apparent that these two isotope records do not agree for Earth’s oldest rocks. Hf isotopes of zircon from juvenile, nominally mantle-derived rocks throughout the Eoarchean have broadly chondritic initial isotope compositions and indicate large-scale development of the depleted mantle reservoir started no earlier than ~ 3.8 Ga. In contrast, the long-lived Sm-Nd isotope record shows large variation in Nd isotope compositions. Most notably, Paleo- and Eoarchean terranes with chondritic initial Hf isotope compositions have significantly radiogenic Nd isotope compositions indicative of the development of a widespread depleted mantle reservoir very early in Earth’s history which, by extension, requires extraction of significant volumes of enriched crust. These two isotope systems, therefore, indicate two fundamentally different scenarios for the early Earth and has been called the Hf-Nd paradox. However, an important unresolved question remains: Do these records represent primary isotopic signatures or have they been altered by subsequent thermomagmatic processes? We have been able to provide clarity in the Hf isotope record by analyzing zircon from Eo- and Paleoarchean magmatic rocks by determining its U-Pb crystallization age and linking this to its corresponding Hf isotope composition. We can do this unambiguously—even in complex polymetamorphic gneisses—with the laser ablation split stream (LASS) technique whereby we determine U-Pb age and Hf isotope composition simultaneously in a single zircon volume. The existing Nd isotope data, in contrast, are all from bulk-rock analyses. These analyses are potentially problematic in old, polymetamorphic rocks because of the inability to link the measured isotopic composition to a specific age. In addition, the REE budget in these rocks is hosted by accessory phases that can be easily mobilized during later metamorphic and magmatic events. We can now use the LASS approach in REE rich phases (e.g., monazite, titanite, allanite, apatite) to determine U-Pb age and Nd isotope composition in a single analytical volume. New Nd isotope data from the Acasta Gneiss Complex (Fisher et al., EPSL, 2020) show that REE-rich accessory phases are not in isotopic equilibrium with their bulk rock compositions and clearly demonstrate mobilization after initial magmatic crystallization. This post-magmatic open-system behavior may well explain the disagreement in the Hf-Nd isotope record in high-grade polymetamorphic terranes like Acasta. In less complicated, lower-grade rocks, such as in the Pilbara terrane, these REE-rich phases yield consistent U-Pb and Sm-Nd age and isotope compositions indicating that the Nd isotope system in these rocks has remained closed since formation. Of particular note, in the Pilbara samples, the Hf and Nd isotope systems have consistent, broadly chondritic, initial Hf and Nd isotope compositions. In these less-complicated samples, where the Sm-Nd isotope system has remained closed, the Hf and Nd isotope systems agree and there is no Hf-Nd paradox.</p>


Author(s):  
Clark M. Johnson ◽  
Steven B. Shirey ◽  
Karin M. Barovich

ABSTRACT:The Lu-Hf and Re-Os isotope systems have been applied sparsely to elucidate the origin of granites, intracrustal processes and the evolution of the continental crust. The presence or absence of garnet as a residual phase during partial melting will strongly influence Lu/Hf partitioning, making the Lu–Hf isotope system exceptionally sensitive to evaluating the role of garnet during intracrustal differentiation processes. Mid-Proterozoic (1·1–1·5Ga ) ‘anorogenic’ granites from the western U.S.A. appear to have anomalously high εHf values, relative to their εNd values, compared with Precambrian orogenic granites from several continents. The Hf-Nd isotope variations for Precambrian orogenic granites are well explained by melting processes that are ultimately tied to garnet-bearing sources in the mantle or crust. Residual, garnet-bearing lower and middle crust will evolve to anomalously high εHf values over time and may be the most likely source for later ‘anorogenic’ magmas. When crustal and mantle rocks are viewed together in terms of Hf and Nd isotope compositions, a remarkable mass balance is apparent for at least the outer silicate earth where Precambrian orogenic continental crust is the balance to the high-εHf depleted mantle, and enriched lithospheric mantle is the balance to the low-εHf depleted mantle.Although the continental crust has been envisioned to have exceptionally high Re/Os ratios and very radiogenic Os isotope compositions, new data obtained on magnetite mineral separates suggest that some parts of the Precambrian continental crust are relatively Os-rich and non-radiogenic. It remains unclear how continental crust may obtain non-radiogenic Os isotope ratios, and these results have important implications for Re-Os isotope evolution models. In contrast, Phanerozoic batholiths and volcanic arcs that are built on young mafic lower crust may have exceptionally radiogenic Os isotope ratios. These results highlight the unique ability of Os isotopes to identify young mafic crustal components in orogenic magmas that are essentially undetectable using other isotope systems such as O, Sr, Nd and Pb.


2020 ◽  
Vol 115 (6) ◽  
pp. 1195-1212 ◽  
Author(s):  
Kreshimir N. Malitch ◽  
Elena A. Belousova ◽  
William L. Griffin ◽  
Laure Martin ◽  
Inna Yu. Badanina ◽  
...  

Abstract The ultramafic-mafic Talnakh intrusion in the Norilsk province (Russia) hosts one of the world’s major platinum group element (PGE)-Cu-Ni sulfide deposits. This study employed a multitechnique approach, including in situ Hf-O isotope analyses of zircon combined with whole-rock Nd isotope data, in order to gain new insights into genesis of the Talnakh economic intrusion. Zircons from gabbrodiorite, gabbroic rocks of the layered series, and ultramafic rocks have similar mantle-like mean δ18O values (5.39 ± 0.49‰, n = 27; 5.64 ± 0.48‰, n = 34; and 5.28 ± 0.34‰, n = 7, respectively), consistent with a mantle-derived origin for the primary magma(s) parental to the Talnakh intrusion. In contrast, a sulfide-bearing taxitic-textured troctolite from the basal part of intrusion has high δ18O (mean of 6.50‰, n = 3), indicating the possible involvement of a crustal component during the formation of sulfide-bearing taxitic-textured rocks. The Hf isotope compositions of zircon from different rocks of the Talnakh intrusion show significant variations, with ɛHf(t) values ranging from –3.2 to 9.8 for gabbrodiorite, from –4.3 to 11.6 for unmineralized layered-sequence gabbroic rocks, from 2.3 to 12 for mineralized ultramafic rocks, and from –3.5 to 8.8 for mineralized taxitic-textured rocks at the base of the intrusion. The significant range in the initial 176Hf/177Hf values is ascribed to interaction of distinct magma sources during formation of the Talnakh intrusion. These include (1) a juvenile source equivalent to the depleted mantle, (2) a subcontinental lithospheric source, and (3) a minor crustal component. Initial whole-rock Nd isotope compositions of the mineralized taxitic-textured rocks from the base of the intrusion (mean ɛNd(t) = –1.5 ± 1.8) differ from the other rocks, which have relatively restricted ranges in initial ɛNd (mean ɛNd = 0.9 ± 0.2). The major set of ɛNd values around 1.0 at Talnakh is attributed to limited crustal contamination, presumably in deep magma chambers, whereas the smaller set of negative ɛNd values in taxitic-textured rocks is consistent with greater involvement of a crustal component and reflects an interaction with the wall rocks during emplacement.


2019 ◽  
Vol 43 (4) ◽  
pp. 543-565 ◽  
Author(s):  
Yue‐Heng Yang ◽  
Fu‐Yuan Wu ◽  
Qiu‐Li Li ◽  
Yamirka Rojas‐Agramonte ◽  
Jin‐Hui Yang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Ingrid Urban ◽  
Sylvain Richoz

<p>The End-Triassic Mass Extinction (ETME) is one of the five major mass extinctions of the Phanerozoic. The deposition of ooids is atypically high in the direct aftermath of major extinction events, including the ETME. Ooids were intensively investigated both petrographically and sedimentologically in the past decades; but only recently their potentialities as archives for the original chemical composition of the oceans where they formed, have gained awareness. Here we present stratigraphical, sedimentological and geochemical aspects for a mid-Norian-Hettangian section from the Emirates.</p><p>Petrographic analyses provided a detailed morphological classification of post-ETME coated grains, supported by point counting of two isochronous geological sections. FE-SE-EDX imaging unraveled peculiar µm-scale features linked to morphology, diagenesis and biotic interaction in the cortex. LA-ICP-MS analyses were performed for specific major and trace elements. Post-extinction oolites show high variability in size and development of the cortex. They range from small (~ 300 µm) and superficial coating, to bigger (up to 800 µm) and well developed. The degree of micritization highlights different oxic conditions in the diagenetic environment. LA-ICP-MS analyses give insights into seawater redox conditions during ooids formation, siliciclastic contamination, diagenetic processes and the role of bacterial strain in shaping the ooids. Petrographical and geochemical data point out to a calcitic deposition of these ooids as odd with the general consideration that the Late Triassic to Early Jurassic was part of the Aragonite sea. This has major implication on the understanding of the carbonate saturation in the oceans just after the mass-extinction and on the interpretation of several proxies as the C and Ca isotope-system.</p><p> </p><p> </p>


2006 ◽  
Vol 3 (1) ◽  
pp. 53-64 ◽  
Author(s):  
H. Biester ◽  
D. Selimović ◽  
S. Hemmerich ◽  
M. Petri

Abstract. Halogens are strongly enriched in peat and peatlands and such they are one of their largest active terrestrial reservoir. The enrichment of halogens in peat is mainly attributed to the formation of organohalogens and climatically controlled humification processes. However, little is known about release of halogens from the peat substrate and the distribution of halogens in the peat pore water. In this study we have investigated the distribution of chlorine, bromine and iodine in pore water of three pristine peat bogs located in the Magellanic Moorlands, southern Chile. Peat pore waters were collected using a sipping technique, which allows in situ sampling down to a depth greater than 6m. Halogens and halogen species in pore water were determined by ion-chromatography (IC) (chlorine) and IC-ICP-MS (bromine and iodine). Results show that halogen concentrations in pore water are 15–30 times higher than in rainwater. Mean concentrations of chlorine, bromine and iodine in pore water were 7–15 mg l−1, 56–123 μg l−1, and 10–20 μg l−1, which correspond to mean proportions of 10–15%, 1–2.3% and 0.5–2.2% of total concentrations in peat, respectively. Organobromine and organoiodine were the predominant species in pore waters, whereas chlorine in pore water was mostly chloride. Advection and diffusion of halogens were found to be generally low and halogen concentrations appear to reflect release from the peat substrate. Release of bromine and iodine from peat depend on the degree of peat degradation, whereas this relationship is weak for chlorine. Relatively higher release of bromine and iodine was observed in less degraded peat sections, where the release of dissolved organic carbon (DOC) was also the most intensive. It has been concluded that the release of halogenated dissolved organic matter (DOM) is the predominant mechanism of iodine and bromine release from peat.


2009 ◽  
Vol 260 (1-2) ◽  
pp. 73-86 ◽  
Author(s):  
Courtney J. Gregory ◽  
Christopher R.M. McFarlane ◽  
Jörg Hermann ◽  
Daniela Rubatto

Lithos ◽  
2014 ◽  
Vol 200-201 ◽  
pp. 273-298 ◽  
Author(s):  
E. Merino Martínez ◽  
C. Villaseca ◽  
D. Orejana ◽  
C. Pérez-Soba ◽  
E. Belousova ◽  
...  

2022 ◽  
Author(s):  
Chao Wang ◽  
et al.

Text S1: Analytical methods. Figure S1: Zr versus selected element variation diagrams to highlight the effects of alteration and metamorphism for the basalts from Langjiexue area. Figure S2: (A) Ti/Y vs. TiO2, and (B) Ti/Y vs. MgO diagrams for the basalt samples from the Langjiexue in Tethyan Himalaya. Table S1: Representative Permian-Triassic magmatic events along the Tethyan Himalaya. Table S2: Zircon LA-ICP-MS U-Pb in-situ analyzing results for zircons from the Langjiexue basalts. Table S3: Whole-rock major, trace element and Sr-Nd isotope data of Langjiexue basalts.


Sign in / Sign up

Export Citation Format

Share Document