Prediction of rate constants for the gas phase reactions of triphenylene with OH and NO3 radicals using a relative rate method in CCl4 liquid phase-system

Chemosphere ◽  
2013 ◽  
Vol 90 (2) ◽  
pp. 766-771 ◽  
Author(s):  
Takayuki Kameda ◽  
Koji Inazu ◽  
Kohei Asano ◽  
Madoka Murota ◽  
Norimichi Takenaka ◽  
...  
2005 ◽  
Vol 34 (6) ◽  
pp. 758-759 ◽  
Author(s):  
Takayuki Kameda ◽  
Kohei Asano ◽  
Koji Inazu ◽  
Yoshiharu Hisamatsu ◽  
Norimichi Takenaka ◽  
...  

2003 ◽  
Vol 3 (6) ◽  
pp. 2233-2307 ◽  
Author(s):  
R. Atkinson

Abstract. The available database concerning rate constants for gas-phase reactions of the hydroxyl (OH) radical with alkanes through early 2003 is presented over the entire temperature range for which measurements have been made (~180-2000 K). Measurements made using relative rate methods are re-evaluated using recent rate data for the reference compound (generally recommendations from this review). In general, whenever more than one study has been carried out over an overlapping temperature range, recommended rate constants or temperature-dependent rate expressions are presented. The recommended 298 K rate constants, temperature-dependent parameters, and temperature ranges over which these recommendations are applicable are listed in Table 1.


2003 ◽  
Vol 3 (4) ◽  
pp. 4183-4358 ◽  
Author(s):  
R. Atkinson

Abstract. The available database concerning rate constants for gas-phase reactions of the hydroxyl (OH) radical with alkanes through early 2003 is presented ove the entire temperature range for which measurements have been made (~180–2000 K). Measurements made using relative rate methods are re-evaluated using recent rate data for the reference compound (generally recommendations from this review). In general, whenever more than one study has been carried out over an overlapping temperature range, recommended rate constants or temperature-dependent rate expressions are presented.


2008 ◽  
Vol 21 (5) ◽  
pp. 393-396 ◽  
Author(s):  
Pablo R. Dalmasso ◽  
Raúl A. Taccone ◽  
Jorge D. Nieto ◽  
Pablo M. Cometto ◽  
Silvia I. Lane

The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


1981 ◽  
Vol 59 (11) ◽  
pp. 1615-1621 ◽  
Author(s):  
Scott D. Tanner ◽  
Gervase I. Mackay ◽  
Diethard K. Bohme

Flowing afterglow measurements are reported which provide rate constants and product identifications at 298 ± 2 K for the gas-phase reactions of OH− with CH3OH, C2H5OH, CH3OCH3, CH2O, CH3CHO, CH3COCH3, CH2CO, HCOOH, HCOOCH3, CH2=C=CH2, CH3—C≡CH, and C6H5CH3. The main channels observed were proton transfer and solvation of the OH−. Hydration with one molecule of H2O was observed either to reduce the rate slightly and lead to products which are the hydrated analogues of the "nude" reaction, or to stop the reaction completely, k ≤ 10−12 cm3 molecule−1 s−1. The reaction of OH−•H2O with CH3—C≡CH showed an uncertain intermediate behaviour.


1969 ◽  
Vol 22 (6) ◽  
pp. 1177 ◽  
Author(s):  
DS Caines ◽  
RB Paton ◽  
DA Williams ◽  
PR Wilkinson

Liquid 1,2-dichloroethane has been chlorinated by dissolved chlorine to a succession of chloroethanes up to the ultimate hexachloroethane. The results of both batch and continuous stirred tank reactor systems have been analysed by computer techniques to give a set of relative rate constants from which one can predict the product composition for a given chlorine uptake, the aim in this work being to optimize the production of tetrachloroethanes. An unusual feature of the kinetics is that 1,1,1,2- and 1,1,2,2-tetrachloroethanes provide alternative pathways between 1,1,2-trichloroethane and pentachloroethane.


2003 ◽  
Vol 107 (34) ◽  
pp. 6603-6608 ◽  
Author(s):  
Woojin Lee ◽  
Philip S. Stevens ◽  
Ronald A. Hites

Sign in / Sign up

Export Citation Format

Share Document