Transformation of Polyfluorinated compounds in natural waters by advanced oxidation processes

Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 1780-1787 ◽  
Author(s):  
Tarun Anumol ◽  
Sonia Dagnino ◽  
Darcy R. Vandervort ◽  
Shane A. Snyder
2007 ◽  
Vol 4 (5) ◽  
pp. 355 ◽  
Author(s):  
Józef Ziajka ◽  
Krzysztof J. Rudzinski

Environmental context. Chlorophenols pollute natural waters and soils, as well as urban waste water systems. Although toxic and carcinogenic to animals and humans, a detailed knowledge of their action is limited. A new approach to effective degradation in the environment is advanced oxidation processes with sulfate radicals. The radicals can originate from the oxidation of sulfur dioxide or sulfites to make these common pollutants and food additives interact with chlorophenols. The main goal of this work is to determine rate constants for reactions of these chlorophenols with sulfate radicals in order to shed some light on the chemical kinetics of these reactions. Abstract. Kinetic experiments have shown that six chlorophenols (CPs) inhibit the autoxidation of SIV catalysed by Fe(ClO4)3 in aqueous solution at 25°C and pH ≈ 3.0. Efficiency of the inhibition decreases with the number of chlorine substituents for all CPs except for 2,5-dichlorophenol (2,5-DCP), which ranked between the tri- and tetrachlorophenols. The inhibition is explained by reactions of chlorophenols with sulfate radicals, the chain carriers in the mechanism of autoxidation. Rate constants for these reactions are determined for the first time, using the reversed-rates method with ethanol as a reference inhibitor: 8.7 × 109 (4-CP), 7.4 × 109 (2,4-DCP), 1.9 × 109 (2,5-DCP), 2.4 × 109 (2,4,5-TCP), 2.9 × 109 (2,4,6-TCP), and 7.5 × 108 (2,3,5,6-TTCP); 4.3 × 107 (ethanol reference) M–1 s–1. Linear correlations were derived for the estimation of rate constants for the remaining chlorophenols using sums of Brown substituent coefficients or relative strengths of O–H bonds. The results can be used in the development of advanced oxidation processes that utilise sulfate radicals for mineralisation of chlorophenols in wastewaters, and also demonstrate that chlorophenols can extend the lifetimes of SO2 and sulfites in natural and atmospheric waters.


2020 ◽  
Vol 6 (10) ◽  
pp. 2800-2815
Author(s):  
Jelena Molnar Jazić ◽  
Tajana Đurkić ◽  
Bojan Bašić ◽  
Malcolm Watson ◽  
Tamara Apostolović ◽  
...  

In water treatment, the application of advanced oxidation processes (AOPs) which involve the generation of not only hydroxyl but also sulfate radicals has recently attracted increasing attention worldwide.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 205 ◽  
Author(s):  
Carlos Amor ◽  
Leonilde Marchão ◽  
Marco S. Lucas ◽  
José A. Peres

Agro-industrial wastewaters are characterized by the presence of multiple organic and inorganic contaminants of environmental concern. The high pollutant load, the large volumes produced, and the seasonal variability makes the treatment of these wastewaters an environmental challenge. A wide range of wastewater treatment processes are available, however the continuous search for cost-effective treatment methods is necessary to comply with the legal limits of release in sewer systems and/or in natural waters. This review presents a state-of-the-art of the application of advanced oxidation processes (AOPs) to some worldwide generated agro-industrial wastewaters, such as olive mill, winery and pulp mill wastewaters. Studies carried out just with AOPs or combined with physico-chemical or biological treatments were included in this review. The main remarks and factors affecting the treatment efficiency such as chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total organic carbon (TOC), and total polyphenols removal are discussed. From all the studies, the combination of processes led to better treatment efficiencies, regardless the wastewater type or its physico-chemical characteristics.


2021 ◽  
Vol 412 ◽  
pp. 125253
Author(s):  
Bingkun Huang ◽  
Zelin Wu ◽  
Hongyu Zhou ◽  
Jiayi Li ◽  
Chenying Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document