Ultrasensitive detection of inhaled organic aerosol particles by accelerator mass spectrometry

Chemosphere ◽  
2016 ◽  
Vol 159 ◽  
pp. 80-88 ◽  
Author(s):  
E.V. Parkhomchuk ◽  
D.G. Gulevich ◽  
A.I. Taratayko ◽  
A.M. Baklanov ◽  
A.V. Selivanova ◽  
...  
1991 ◽  
Vol 260 (3) ◽  
pp. F466-F469 ◽  
Author(s):  
O. Meirav ◽  
R. A. Sutton ◽  
D. Fink ◽  
R. Middleton ◽  
J. Klein ◽  
...  

The advent of accelerator mass spectrometry (AMS) now permits the ultrasensitive detection of extremely long-lived isotopes, including 14C, 26Al, and 41Ca. Until now, tracer studies of aluminum kinetics have not been possible because aluminum has only two isotopes, with half-lives of 6.5 min (29Al) and 7 x 10(5) yr (26Al), neither of which is suitable for conventional studies. In a novel experiment we have employed AMS to study aluminum kinetics in a normal rat and a 5/6-nephrectomized rat over a 3-wk period of intravenous injection of a tracer dose of 26Al. Kinetics were similar in the two animals; approximately 75% of intravenously injected tracer 26Al was excreted in the urine in the first 24 h as was approximately 80% after 3 wk. Renal clearance of 26Al was approximately 0.75 ml.min-1.kg body wt-1 in both rats. The results clearly demonstrate the potential of this technique for isotope tracer studies in animals as well as in humans.


2020 ◽  
Author(s):  
Denis Leppla ◽  
Leslie Kremper ◽  
Nora Zannoni ◽  
Maria Praß ◽  
Florian Ditas ◽  
...  

<p>The Amazon Rainforest is one of the most important pristine ecosystems for atmospheric chemistry and biodiversity. This region allows the study of organic aerosol particles as well as their nucleation into clouds. However, the rainforest is subject to constant change due to human influences. Thus, it is essential to acquire climate data of trace gases and aerosols over the next decades for a better understanding of the atmospheric oxidant cycle. Therefore, the research site Amazon Tall Tower Observatory (ATTO) was established in the central Amazon Basin to perform long-term measurements under almost natural conditions.</p><p>Biogenic emissions of volatile organic compounds (VOCs) mainly consist of isoprene and terpenes. They are responsible for the production of a large fraction of atmospheric particulate matter. Isoprene represents the largest source of non-methane VOCs in the atmosphere and is primarily emitted from vegetation. Its global emissions were estimated in the magnitude of about 500 ‒ 600 Tg per year. Originally, the isoprene photooxidation was not expected to contribute to the secondary organic aerosol (SOA) budget, due to the high volatility of resulting oxidation products. However, several studies have proven evidence for the importance of isoprene SOA formation. Based on the two double bonds, isoprene is highly reactive towards atmospheric oxidants like OH and NO radicals. The subsequent reactive uptake on acidic particles is strongly dependent on the NO concentration. Therefore, anthropogenic sources have a substantial impact on the isoprene photooxidation.</p><p>The chemical composition of atmospheric aerosols in the rainforest highly depends on the current season, since the Amazon basin exhibits huge variations of gaseous and particulate matter with clean air conditions during the wet season and polluted conditions during the dry season, due to biomass burning events. For a comprehensive statement, it is necessary to perform field measurements under both conditions to study the isoprene and terpene SOA contribution. For that reason, filter samples were collected at ATTO at different heights to analyze the aerosol composition emitted both from local and regional sources.</p><p>High-resolution mass spectrometry combined with data mining techniques will help to link characteristic SOA compounds to certain climate conditions in order to get insights into the Amazon aerosol life cycle.</p>


Radiocarbon ◽  
2007 ◽  
Vol 49 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Yaroslav V Kuzmin

The problem of a hiatus at about 6100–5300 BP (about 4900–4200 cal BC) in the prehistoric chronology of the Cis-Baikal region in Siberia is discussed. Based on a critical evaluation of existing evidence, there was no discontinuity found in the cultural sequence between the Kitoi and Serovo/Glazkovo complexes of the Neolithic, and the proposed “hiatus” may be an artifact based on underestimation of solid data. Conventional 14C dates are presented that were generated in the 1980s to early 2000s for Cis-Baikal prehistoric burial grounds, and were later dated by the accelerator mass spectrometry (AMS).


Radiocarbon ◽  
2021 ◽  
pp. 1-12
Author(s):  
G Quarta ◽  
M Molnár ◽  
I Hajdas ◽  
L Calcagnile ◽  
I Major ◽  
...  

ABSTRACT The application of accelerator mass spectrometry radiocarbon (AMS 14C) dating in forensics is made possible by the use of the large excursion of the 14C concentration in the post-WWII terrestrial atmosphere due to nuclear testing as a reference curve for data calibration. By this approach high-precision analyses are possible on samples younger than ∼70 years. Nevertheless, the routine, widespread application of the method in the practice of forensics still appears to be limited by different issues due to possible complex interpretation of the results. We present the results of an intercomparison exercise carried out in the framework of an International Atomic Energy Agency (IAEA) CRP-Coordinated Research Project between three AMS laboratories in Italy, Hungary, and Switzerland. Bone and ivory samples were selected with ages spanning from background (>50 ka) to 2018. The results obtained allow us to assess the high degree of reproducibility of the results and the remarkable consistency of the experimental determinations.


Author(s):  
Matus E. Diveky ◽  
Michael J. Gleichweit ◽  
Sandra Roy ◽  
Ruth Signorell

Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 249-254 ◽  
Author(s):  
J N Lanting ◽  
A T Aerts-Bijma ◽  
J van der Plicht

When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.


Sign in / Sign up

Export Citation Format

Share Document