scholarly journals Shining New Light on the Kinetics of Water Uptake by Organic Aerosol Particles

Author(s):  
Matus E. Diveky ◽  
Michael J. Gleichweit ◽  
Sandra Roy ◽  
Ruth Signorell
2015 ◽  
Vol 15 (17) ◽  
pp. 24473-24511 ◽  
Author(s):  
D. M. Lienhard ◽  
A. J. Huisman ◽  
U. K. Krieger ◽  
Y. Rudich ◽  
C. Marcolli ◽  
...  

Abstract. New measurements of water diffusion in aerosol particles produced from secondary organic aerosol (SOA) material and from a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA droplets suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.


2017 ◽  
Vol 19 (47) ◽  
pp. 31634-31646 ◽  
Author(s):  
Stephen Ingram ◽  
Chen Cai ◽  
Young-Chul Song ◽  
David R. Glowacki ◽  
David O. Topping ◽  
...  

Here we present methods to simultaneously investigate diffusivities and volatilities in studies of evolving single aerosol particle size and composition.


2013 ◽  
Vol 15 (8) ◽  
pp. 2983 ◽  
Author(s):  
Evan Abramson ◽  
Dan Imre ◽  
Josef Beránek ◽  
Jacqueline Wilson ◽  
Alla Zelenyuk

2021 ◽  
Author(s):  
Fabian Mahrt ◽  
Yuanzhou Huang ◽  
Shaun Xu ◽  
Manabu Shiraiwa ◽  
Andreas Zuend ◽  
...  

<p>Aerosol particles are ubiquitous in the atmosphere and play an important role for air quality and Earth’s climate. Primary organic aerosol (POA), secondary organic aerosol (SOA), and secondary inorganic aerosol (SIA) constitute a significant mass fraction of these particles. POA, SOA, and SIA can become internally mixed within the same particle though different processes such as coagulation, gas–particle partitioning. To predict the role of these internally mixed particles in climate and air quality information on their phase behaviour is needed, i.e. information on the number and type of phases present within these particles. As an example, a particle with a single homogeneous liquid phase can have different radiative properties, reaction rates, uptake kinetics, and potential to change cloud microphysical properties by activating into a cloud droplet, compared to a particle with multiple liquid or solid phases.</p><p>In the current study we used Nile red, a solvatochromic dye, and fluorescence microscopy in order to determine the phase behaviour of POA+SOA+SIA particles. Squalane was used as a proxy of POA, ammonium sulfate was used as SIA and 1 of 23 different oxidized organic molecules were used as proxies of SOA. We demonstrate that three liquid phases often coexist within individual particles. We find that the phase behaviour strongly depends on the oxygen-to-carbon ratio of the SOA proxies. Experiments with SOA generated by dark ozonolysis of α-pinene in an environmental chamber are consistent with these observations. We also used thermodynamic and kinetic modelling to investigate the atmospheric implications of our experimental results.</p>


Sign in / Sign up

Export Citation Format

Share Document