Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment

Chemosphere ◽  
2017 ◽  
Vol 168 ◽  
pp. 284-292 ◽  
Author(s):  
Laura Ferrando-Climent ◽  
Rafael Gonzalez-Olmos ◽  
Alba Anfruns ◽  
Ignasi Aymerich ◽  
Lluis Corominas ◽  
...  
Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 612 ◽  
Author(s):  
Juan José Rueda-Márquez ◽  
Irina Levchuk ◽  
Manuel Manzano ◽  
Mika Sillanpää

The application of Fenton-based advanced oxidation processes (AOPs), such as photo-Fenton or electro-Fenton for wastewater treatment have been extensively studied in recent decades due to its high efficiency for the decomposition of persistent organic pollutants. Usually Fenton-based AOPs are used for the degradation of targeted pollutant or group of pollutants, which often leads to the formation of toxic by-products possessing a potential environmental risk. In this work, we have collected and reviewed recent findings regarding the feasibility of Fenton-based AOPs (photo-Fenton, UVC/H2O2, electro-Fenton and galvanic Fenton) for the detoxification of real municipal and industrial wastewaters. More specifically, operational conditions, relevance and suitability of different bioassays for the toxicity assessment of various wastewater types, cost estimation, all of which compose current challenges for the application of these AOPs for real wastewater detoxification are discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Silvia Franz ◽  
Ermelinda Falletta ◽  
Hamed Arab ◽  
Sapia Murgolo ◽  
Massimiliano Bestetti ◽  
...  

Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.


2013 ◽  
Vol 68 (9) ◽  
pp. 1976-1983 ◽  
Author(s):  
C. vom Eyser ◽  
A. Börgers ◽  
J. Richard ◽  
E. Dopp ◽  
N. Janzen ◽  
...  

The entry of pharmaceuticals into the water cycle from sewage treatment plants is of growing concern because environmental effects are evident at trace levels. Ozonation, UV- and UV/H2O2-treatment were tested as an additional step in waste water treatment because they have been proven to be effective in eliminating aqueous organic contaminants. The pharmaceuticals carbamazepine, ciprofloxacin, diclofenac, metoprolol and sulfamethoxazole as well as the personal care products galaxolide and tonalide were investigated in terms of degradation efficiency and by-product formation in consideration of toxic effects. The substances were largely removed from treatment plant effluent by ozonation, UV- and UV/H2O2-treatment. Transformation products were detected in all tested treatment processes. Accompanying analysis showed no genotoxic, cytotoxic or estrogenic potential for the investigated compounds after oxidative treatment of real waste waters. The results indicate that by-product formation from ozonation and advanced oxidation processes does not have any negative environmental impact.


2018 ◽  
Vol 4 (9) ◽  
pp. 1213-1218 ◽  
Author(s):  
Wei Li ◽  
Elvis Xu ◽  
Daniel Schlenk ◽  
Haizhou Liu

Ultraviolet-driven advanced oxidation processes (UV/AOPs) are integral steps in water reuse treatment trains.


Sign in / Sign up

Export Citation Format

Share Document