Application of Liquid Chromatography-Mass Spectrometry for the Analysis of Endocrine Disrupting Chemical Transformation Products in Advanced Oxidation Processes and Their Reaction Mechanisms

Author(s):  
Jin-Chung Sin ◽  
Sze-Mun Lam ◽  
Abdul Rahman Mohamed
Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 116
Author(s):  
Yi-Ping Lin ◽  
Ramdhane Dhib ◽  
Mehrab Mehrvar

Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation.


2020 ◽  
Vol 6 (1) ◽  
pp. 181-188 ◽  
Author(s):  
Jing He ◽  
Na Li ◽  
Dongmei Zhang ◽  
Guangfan Zheng ◽  
Hong Zhang ◽  
...  

An effective electrochemical-mass spectrometry method for real-time monitoring of organics degradation by electrochemical advanced oxidation processes is reported.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Silvia Franz ◽  
Ermelinda Falletta ◽  
Hamed Arab ◽  
Sapia Murgolo ◽  
Massimiliano Bestetti ◽  
...  

Carbamazepine (CBZ) is a pharmaceutical compound recalcitrant to conventional wastewater treatment plants and widely detected in wastewater bodies. In the present study, advanced oxidation processes for carbamazepine removal are investigated, with particular regard to the degradation pathways of carbamazepine by photoelectrocatalysis and conventional photocatalysis. Photoelectrocatalysis was carried out onto TiO2 meshes obtained by Plasma Electrolytic Oxidation, a well-known technique in the field of industrial surface treatments, in view of an easy scale-up of the process. By photoelectrocatalysis, 99% of carbamazepine was removed in 55 min while only 65% removal was achieved by photolysis. The investigation of the transformation products (TPs) was carried out by means of UPLC-QTOF/MS/MS. Several new TPs were identified and accordingly reaction pathways were proposed. Above 80 min the transformation products disappear, probably forming organic acids of low-molecular weight as final degradation products. The results demonstrated that photoelectrocatalysis onto TiO2 meshes obtained by plasma electrolytic oxidation is a useful alternative to common advanced oxidation processes as wastewater tertiary treatment aimed at removing compounds of emerging concern.


Sign in / Sign up

Export Citation Format

Share Document