Effect of organic loading rate on the removal of DMF, MC and IPA by a pilot-scale AnMBR for treating chemical synthesis-based antibiotic solvent wastewater

Chemosphere ◽  
2018 ◽  
Vol 198 ◽  
pp. 49-58 ◽  
Author(s):  
Zhaobo Chen ◽  
Haiyan Su ◽  
Dongxue Hu ◽  
Fuquan Jia ◽  
Zhenghai Li ◽  
...  
2011 ◽  
Vol 64 (8) ◽  
pp. 1629-1635 ◽  
Author(s):  
M. Esparza Soto ◽  
C. Solís Morelos ◽  
J. J. Hernández Torres

The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 °C) for more than 300 days. The applied organic loading rate (OLRappl) was gradually increased from 4 to 6 and 8 kg CODsol/m3d by increasing the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent CODsol and the OLRappl. The highest removed organic loading rate (OLRrem) was reached when the UASB reactor was operated at 8 kg CODsol/m3d and it was two times higher than that obtained for an OLRappl of 4 kg CODsol/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLRappl increased, which caused an increment of the effluent CODsol. Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.


2017 ◽  
Vol 12 (3) ◽  
pp. 501-513 ◽  
Author(s):  
Shuai. Wang ◽  
Nirmal. Ghimire ◽  
Gang. Xin ◽  
Eshetu. Janka ◽  
Rune. Bakke

Performance of a pilot scale Hybrid Vertical Anaerobic Biofilm (HyVAB) reactor treating petrochemical refinery wastewater is presented here. The reactor is an integration of a bottom anaerobic sludge bed and a top aerobic biofilm stage and was operated continuously for 92 days at 21 ± 2 °C. Wastewater was fed continuously to the reactor with step flow increases reducing hydraulic retention time from 55 to 12 hours, increasing organic loading rate from 3 to 33 kg-COD/m3·d. The HyVAB removed on average 91% and 86% of the soluble and total feed COD, respectively, at steady state and loads up to 23 kg-COD/m3·d, of which 98% of the soluble COD removal occurred in the anaerobic stage. Methane yield ranged from 0.29 to 0.51 L/g-COD removed, including conversion of settled aerobic sludge to methane. Sludge production was low (0.04 kg-VSS/kg-COD removed) and biogas methane content high (84 ± 2%). The results demonstrated that HyVAB is an efficient, low footprint alternative for high strength wastewater treatment.


2012 ◽  
Vol 32 (11) ◽  
pp. 2056-2060 ◽  
Author(s):  
Xiao Liu ◽  
Wei Wang ◽  
Yunchun Shi ◽  
Lei Zheng ◽  
Xingbao Gao ◽  
...  

2016 ◽  
Vol 31 (3) ◽  
pp. 361-364 ◽  
Author(s):  
Yuya Sato ◽  
Tomoyuki Hori ◽  
Ronald R. Navarro ◽  
Ryuichi Naganawa ◽  
Hiroshi Habe ◽  
...  

1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


2000 ◽  
Vol 42 (12) ◽  
pp. 115-121 ◽  
Author(s):  
B. Wang ◽  
Y. Shen

A study on the performance of an Anaerobic Baffled Reactor(ABR) as a hydrolysis-acidogenesis unit in treating the mixed wastewater of landfill leachate and municipal sewage in different volumetric ratios was carried out. The results showed that ABR substantially improved the biological treatability of the mixed wastewater by increasing its BOD5/COD ratio to 0.4–0.6 from the initial values of 0.15–0.3. The formation of bar-shaped granular sludge of 0.5–5 mm both in diameter and length with an SVI of 7.5–14.2 ml/g was observed in all compartments of the ABR when the organic loading rate reached 4.71 kgCOD/m3 · d. The effects of the ratios of NH4+-N/COD and COD/TP in mixed wastewater on the operational performance were also studied, from which it was found that a reasonable NH4+-N/COD ratio should be lower than 0.02, and the phosphorus supplement was needed when the volumetric ratio was higher than 4:6 for stable operation of ABR.


2021 ◽  
Vol 123 ◽  
pp. 52-59
Author(s):  
L. Megido ◽  
L. Negral ◽  
Y. Fernández-Nava ◽  
B. Suárez-Peña ◽  
P. Ormaechea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document