Anaerobic Treatment of Polyethylene Terephthalate (PET) Wastewater from Lab to Full Scale

1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.

2011 ◽  
Vol 71-78 ◽  
pp. 2103-2106
Author(s):  
Ming Yue Zheng ◽  
Ming Xia Zheng ◽  
Kai Jun Wang ◽  
Hai Yan

The performance of upflow anaerobic sludge blanket (UASB) fed with three metabolic intermediate (acetate, ethanol, and propionate) respectively was studied. The degradation of metabolic intermediate were investigated to discuss the reason for propionate inhibition problem in anaerobic treatment. The hydraulic retention time (HRT) in the reactors started with 8.0h.The yield rate of biogas were 237ml/gCOD, 242ml/gCOD, 218ml/gCOD for acetate, ethanol and propionate, respectively when finishing start-up under OLR of 5.0 kgCOD/(m3·d) (HRT=9.6h).The HRT remained constant 9.6h,and the substrate concentration was gradually increased from 1,000 to 16,000mg/L as COD,and the organic loading rates(OLR) was from 3.0 to 40.0 kgCOD/(m3·d).The maximum propionate concentration was 41.6 gHPr-COD/L at the organic loading rate of 43.9 kgCOD/(m3·d) (HRT, 9.6h) as well as acetate and ethanol.


2005 ◽  
Vol 51 (1) ◽  
pp. 153-158 ◽  
Author(s):  
C. Arnaiz ◽  
S. Elmaleh ◽  
J. Lebrato ◽  
R. Moletta

The long start-up period of fluidized bed biofilm reactors is a serious obstacle for their wide installation in the anaerobic treatment of industrial wastewater. This paper presents the results of an anaerobic inverse turbulent bioreactor treating distillery wastewater during 117 days of operation at a laboratory scale. The pre-colonized bioparticles for this work were obtained from a similar reactor processing the same wastewater and which had a start-up period of 3 months. The system attained carbon removal efficiency rates between 70 and 92%, at an organic loading rate of 30.6 kg m+3 d+1 (chemical oxygen demand) with a hydraulic retention time of 11.1 h. The results obtained showed that the start-up period of this kind of reactors can be reduced by 3 using pre-colonized bioparticles.


2011 ◽  
Vol 64 (8) ◽  
pp. 1629-1635 ◽  
Author(s):  
M. Esparza Soto ◽  
C. Solís Morelos ◽  
J. J. Hernández Torres

The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 °C) for more than 300 days. The applied organic loading rate (OLRappl) was gradually increased from 4 to 6 and 8 kg CODsol/m3d by increasing the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent CODsol and the OLRappl. The highest removed organic loading rate (OLRrem) was reached when the UASB reactor was operated at 8 kg CODsol/m3d and it was two times higher than that obtained for an OLRappl of 4 kg CODsol/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLRappl increased, which caused an increment of the effluent CODsol. Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.


2006 ◽  
Vol 54 (2) ◽  
pp. 261-267 ◽  
Author(s):  
L. Borzacconi ◽  
I. López ◽  
M. Passeggi

An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17–25 °C).


1996 ◽  
Vol 23 (6) ◽  
pp. 1305-1315 ◽  
Author(s):  
R. Prakash ◽  
K. J. Kennedy

Start-up and steady state operation of anaerobic fluidized bed reactors (AFBRs) with biolite as the inert carrier material was studied. Start-up and concomitant biofilm development of AFBRs was performed using two common start-up techniques, the maximum efficiency profile (MEP) technique and the maximum load profile (MLP) technique. The MEP start-up technique increases the volumetric organic loading rates to the reactor gradually and is tied to the removal efficiency of the process. The MLP start-up technique maintains a moderately high but constant volumetric organic loading rate irrespective of reactor performance. Using sucrose-based wastewater as feed, both start-up techniques led to equally fast biofilm development and start-up times of approximately 5 weeks. However, the MEP technique resulted in more stable controlled reactor operation during the start-up period. The quick start-up confirms the high compatibility of biolite for bio-adhesion and the development of a healthy active biofilm.High concentrations of biofilm biomass achieved in AFBRs (69 g volatile biofilm solids (VBS)/L of expanded bed volume at an organic loading rate of 25 g COD/(Lùd)) allowed the successful treatment of wastewaters at high organic loading rates and organic removal efficiencies. During steady state experiments, organic removal efficiencies over 80% were obtained for organic loading rates as high as 20 g COD/(L∙d). It was found that the dependence of removal efficiency on hydraulic retention time is influenced by substrate concentration. Total biofilm yield was determined to be 0.08 g VBS/g COD removed, demonstrating the low net synthesis of solids in the AFBR. AFBRs had an average solids retention time of 150 days, corresponding to a washout factor of 0.01. Extrinsic kinetics of the AFBRs was determined to be zero order with a maximum specific utilization rate of 0.48 g COD/(g VBS∙d).AFBRs used to treat municipal landfill leachate with a BOD5:COD ratio of 0.86 achieved steady state COD removal efficiencies that ranged from 70% to 87%, depending on the reactor organic loading rate and the concentration of the leachate being treated. During leachate treatment, biofilm biomass gradually became "mineralized" as a result of precipitation of metal sulfides and carbonates. This eventually resulted in a decrease in biofilm microbial activity and the need for higher pumping rates to maintain the same degree of bed expansion. Key words: anaerobic, biological fluidized bed reactor, biolite, landfill leachate, sucrose, modeling, start-up, steady state kinetics.


Author(s):  
Javkhlan Ariunbaatar ◽  
Robert Bair ◽  
Onur Ozcan ◽  
Harish Ravishankar ◽  
Giovanni Esposito ◽  
...  

Anaerobic digestion of food waste (FW) is typically limited to large reactors due to high hydraulic retention times (HRTs). Technologies such as anaerobic membrane reactors (AnMBRs) can perform anaerobic digestion at lower HRTs while maintaining high chemical oxygen demand (COD) removal efficiencies. This study evaluated the effect of HRT and organic loading rate (OLR) on the stability and performance of a side-stream AnMBR in treating diluted fresh food waste (FW). The reactor was fed with synthetic FW at an influent concentration of 8.24 (± 0.12) g COD/L. The OLR was increased by reducing the HRT from 20 to 1 d. The AnMBR obtained an overall removal efficiency of >97 and >98% of the influent COD and total suspended solids (TSS), respectively, throughout the course of operation. The biological process was able to convert 76% of the influent COD into biogas with 70% methane content, while the cake layer formed on the membrane gave an additional COD removal of 7%. Total ammoniacal nitrogen (TAN) and total nitrogen (TN) concentrations were found to be higher in the bioreactor than in the influent, and average overall removal efficiencies of 17.3 (± 5) and 61.5 (± 3)% of TAN and TN, respectively, were observed with respect to the bioreactor concentrations after 2 weeks. Total phosphorus (TP) had an average removal efficiency of 40.39 (± 5)% with respect to the influent. Membrane fouling was observed when the HRT was decreased from 7 to 5 d and was alleviated through backwashing. This study suggests that the side-stream AnMBR can be used to successfully reduce the typical HRT of wet anaerobic food waste (solids content 7%) digesters from 20 days to 1 day, while maintaining a high COD removal efficiency and biogas production.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 167-173 ◽  
Author(s):  
G.O. Sigge ◽  
T.J. Britz ◽  
P.C. Fourie ◽  
C.A. Barnardt

The efficiency of ozone as a pre- and post-treatment to UASB treatment was investigated, followed by a study into UASB reactor performance with ozonated wastewater as substrate. Combinations of pre- and/or post-ozonation with UASB treatment gave better results than ozonation or UASB alone and COD reductions of 53.0–98.9% were achieved for treatment of canning and winery wastewaters. A UASB reactor was fed with pre-ozonated cannery wastewater for over 70 d. COD removal improved from between 58.8 and 64.4% to between 85.3 and 91.8% after pre-ozonated substrate feed commenced. Subsequent increases in organic loading rate (OLR) from 2.4 to 3.4 kgCOD m−3.d−1 did not affect reactor performance. By including a final post-ozonation treatment to this UASB effluent a total COD reduction of 99.2% was achieved.


Sign in / Sign up

Export Citation Format

Share Document