Plant metal concentrations in Theobroma cacao as affected by soil metal availability in different soil types

Chemosphere ◽  
2021 ◽  
Vol 262 ◽  
pp. 127749
Author(s):  
Caleb Lewis ◽  
Adrian M. Lennon ◽  
Gaius Eudoxie ◽  
Paramasivam Sivapatham ◽  
Pathmanathan Umaharan
Author(s):  
Gabriel Filippelli ◽  
Jessica Adamic ◽  
Deborah Nichols ◽  
John Shukle ◽  
Emeline Frix

An ambitious citizen science effort in the city of Indianapolis (IN, USA) led to the collection and analysis of a large number of samples at the property scale, facilitating the analysis of differences in soil metal concentrations as a function of property location (i.e., dripline, yard, and street) and location within the city. This effort indicated that dripline soils had substantially higher values of lead and zinc than other soil locations on a given property, and this pattern was heightened in properties nearer the urban core. Soil lead values typically exceeded the levels deemed safe for children’s play areas in the United States (<400 ppm), and almost always exceeded safe gardening guidelines (<200 ppm). As a whole, this study identified locations within properties and cities that exhibited the highest exposure risk to children, and also exhibited the power of citizen science to produce data at a spatial scale (i.e., within a property boundary), which is usually impossible to feasibly collect in a typical research study.


Soil Research ◽  
2010 ◽  
Vol 48 (3) ◽  
pp. 286 ◽  
Author(s):  
R. G. McLaren ◽  
A. Black ◽  
L. M. Clucas

In this study we examined the bioavailability and chemistry of Cu, Ni, and Zn in metal-spiked, biosolids-amended forest (Pinus radiata) soils that had undergone a simulated conversion back to agricultural use. Mixing of the biosolids-treated forest litter into the underlying mineral soil resulted in high concentrations of each metal in easily extractable and soil solution forms. There was also very little change in these concentrations during a subsequent 2-year incubation period of the samples. Chemical speciation of the soil solutions using WHAM 6 showed that Cu was dominated by organic complexes, whereas most Ni and Zn was present as Ni2+ and Zn2+, with generally <5% of these elements present as organic complexes. Addition of lime to the soils substantially decreased both readily extractable and soil solution metal concentrations. However, even in their unlimed state, although plant metal concentrations were increased by the original biosolids treatments, there were no adverse effects due to the metals on plant growth as determined in a wheat germination and seedling growth test. In this study, the DGT technique showed considerable promise for assessing metal availability to plants. However, the study suggests that conversion of biosolids-treated forest soils back for agricultural use is unlikely to result in any substantial problems related to the metal loadings built up in the forest litter layer.


2002 ◽  
Vol 2002 (1) ◽  
pp. 194-211
Author(s):  
D.R. Neuman ◽  
S.R. Jennings ◽  
M.K. Reeves

Author(s):  
Gabriel Filippelli ◽  
Jessica Adamic ◽  
Deborah Nichols ◽  
John Shukle ◽  
Emeline Frix

An ambitious citizen-science effort in the city of Indianapolis (Indiana, USA) led to the collection and analysis of a large number of samples at the property scale, facilitating the analysis of differences in soil metal concentrations as a function of property location (i.e., dripline, yard, and street) and location within the city. This effort indicated that dripline soils had substantially higher values of lead and zinc than other soil locations on a given property, and this pattern was heightened in properties nearer the urban core. Soil lead values typically exceeded the levels deemed safe for children’s play areas in the US (&lt;400 ppm), and almost always exceeded safe gardening guidelines (&lt;200 ppm). As a whole, this study identified locations within properties, and cities, that exhibited the highest exposure risk to children, and also exhibited the power of citizen science to produce data at a spatial scale (i.e., within a property boundary) that is usually impossible to feasibly collect in a typical research study.


Environments ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 91
Author(s):  
Shamali De Silva ◽  
Trang Huynh ◽  
Andrew S. Ball ◽  
Demidu V. Indrapala ◽  
Suzie M. Reichman

Finding a reliable method to predict soil metal bioavailability in aged soil continues to be one of the most important problems in contaminated soil chemistry. To investigate the bioavailability of metals aged in soils, we used roadside soils that had accumulated metals from vehicle emissions over a range of years. We collected topsoil (0–10 cm) samples representing new-, medium- and old-aged roadside soils and control site soil. These soils were studied to compare the ability of the diffusive gradients in thin films technique (DGT), soil water extraction, CaCl2 extraction, total metal concentrations and optimised linear models to predict metal bioavailability in wheat plants. The response time for the release of metals and the effect on metal bioavailability in field aged soils was also studied. The DGT, and extractable metals such as CaCl2 extractable and soil solution metals in soil, were not well correlated with metal concentrations in wheat shoots. In comparison, the strongest relationships with concentrations in wheat shoots were found for Ni and Zn total metal concentrations in soil (e.g., Ni r = 0.750, p = 0.005 and Zn r = 0.833, p = 0.001); the correlations were still low, suggesting that total metal concentrations were also not a robust measure of bioavailability. Optimised linear models incorporating soil physiochemical properties and metal extracts together with road age as measure of exposure time, demonstrated a very strong relationship for Mn R2 = 0.936; Ni R2 = 0.936 and Zn R2 = 0.931. While all the models developed were dependent on total soil metal concentrations, models developed for Mn and Zn clearly demonstrated the effect of road age on metal bioavailability. Therefore, the optimised linear models developed have the potential for robustly predicting bioavailable metal concentrations in field soils where the metals have aged in situ. The intrinsic rate of release of metals increased for Mn (R2 = 0.617, p = 0.002) and decreased for Cd (R2 = 0.456, p = 0.096), Cu (R2 = 0.560, p = 0.083) and Zn (R2 =0.578, p = 0.072). Nickel did not show any relationship between dissociation time (Tc) and road age. Roadside soil pH was likely to be the key parameter controlling metal aging in roadside soil.


2012 ◽  
Vol 2012 (1) ◽  
pp. 379-388
Author(s):  
L.J. Mignogna ◽  
W.A. Runyon ◽  
R.W. Nairn ◽  
W.H. Strosnider

2012 ◽  
Vol 3 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Suzanne McDermott ◽  
Weichao Bao ◽  
C. Marjorie Aelion ◽  
Bo Cai ◽  
Andrew Lawson

2017 ◽  
Vol 200 (4) ◽  
Author(s):  
Justin R. Randall ◽  
William G. Hirst ◽  
Lyle A. Simmons

ABSTRACT We tested the activities of four predicated RNase H enzymes, including two RNase HI-type enzymes, in addition to RNase HII (RnhB) and RNase HIII (RnhC), on several RNA-DNA hybrid substrates with different divalent metal cations. We found that the two RNase HI-type enzymes, YpdQ and YpeP, failed to show activity on the three substrates tested. RNase HII and RNase HIII cleaved all the substrates tested, although the activity was dependent on the metal made available. We show that Bacillus subtilis RNase HII and RNase HIII are both able to incise 5′ to a single ribonucleoside monophosphate (rNMP). We show that RNase HIII incision at a single rNMP occurs most efficiently with Mn 2+ , an activity we found to be conserved among other Gram-positive RNase HIII enzymes. Characterization of RNases HII and HIII with metal concentrations in the physiological range showed that RNase HII can cleave at single rNMPs embedded in DNA while RNase HIII is far less effective. Further, using metal concentrations within the physiological range, RNase HIII efficiently cleaved longer RNA-DNA hybrids lacking an RNA-DNA junction, while RNase HII was much less effective. Phenotypic analysis showed that cells with an rnhC deletion were sensitive to hydroxyurea (HU). In contrast, cells with an rnhB deletion showed wild-type growth in the presence of HU, supporting the hypothesis that RNases HII and HIII have distinct substrate specificities in vivo . This work demonstrates how metal availability influences the substrate recognition and activity of RNases HII and HIII, providing insight into their functions in vivo . IMPORTANCE RNase H represents a class of proteins that cleave RNA-DNA hybrids, helping resolve R-loops and Okazaki fragments, as well as initiating the process of ribonucleotide excision repair (RER). We investigated the activities of four Bacillus subtilis RNase H enzymes and found that only RNases HII and HIII have activity and that their substrate preference is dependent on metal availability. To understand the factors that contribute to RNase HII and RNase HIII substrate preference, we show that in the presence of metal concentrations within the physiological range, RNases HII and HIII have distinct activities on different RNA-DNA hybrids. This work provides insight into how RNases HII and HIII repair the broad range of RNA-DNA hybrids that form in Gram-positive bacteria.


Sign in / Sign up

Export Citation Format

Share Document