total metal
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 5 (12) ◽  
pp. 288
Author(s):  
Lars Mattsson

Abstract Assuming that gas and dust separate in the interstellar medium (ISM) so that high-density regions, where stars can form, are almost devoid of dust, the amount of metals being removed from the ISM can be significantly reduced (minimized astration). Here, it is shown by simple analytical models that this may increase the total metal budget of a galaxy considerably. It is suggested that these extra metals may increase the mass of dust such that the “dust budget crisis”, i.e., the fact that there seems to be more dust at high redshifts than can be accounted for, can be ameliorated. Reducing the amount of astration, the metal budget can be more than doubled, in particular for systems that evolve under continuous gas accretion.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3034
Author(s):  
Norhan Nady ◽  
Noha Salem ◽  
Marwa A. A. Mohamed ◽  
Sherif H. Kandil

Iron-nickel alloy is an example of bimetallic nanostructures magnetic alloy, which receives intensive and significant attention in recent years due to its desirable superior ferromagnetic and mechanical characteristics. In this work, a unique starfish-like shape of an iron-nickel alloy with unique magnetic properties was presented using a simple, effective, high purity, and low-cost chemical reduction. There is no report on the synthesis of such novel shape without complex precursors and/or surfactants that increase production costs and introduce impurities, so far. The synthesis of five magnetic iron-nickel alloys with varying iron to nickel molar ratios (10–50% Fe) was undertaken by simultaneously reducing Fe(II) and Ni(II) solution using hydrazine hydrate as a reducing agent in strong alkaline media for 15 min at 95–98 °C. The effect of reaction volume and total metal concentration on the properties of the synthesized alloys was studied. Alloy morphology, chemical composition, crystal structure, thermal stability, and magnetic properties of synthesized iron-nickel alloys were characterized by means of SEM, TEM, EDX, XRD, DSC and VSM. ImageJ software was used to calculate the size of the synthesized alloys. A deviation from Vegard’s law was recorded for iron molar ration higher than 30%., in which superstructure phase of FeNi3 was formed and the presence of defects in it, as well as the dimensional effects of nanocrystals. The saturation magnetization (Ms), coercivity (Hc), retentivity (Mr), and squareness are strongly affected by the molar ratio of iron and nickel and reaction volume as well as the total metal concentration.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5502
Author(s):  
Laetitia Hackel ◽  
Elise Rotureau ◽  
Aoife Morrin ◽  
José Paulo Pinheiro

Electrochemical stripping techniques are interesting candidates for carrying out onsite speciation of environmentally relevant trace metals due to the existing low-cost portable instrumentation available and the low detection limits that can be achieved. In this work, we describe the initial analytical technique method development by quantifying the total metal concentrations using Stripping Chronopotentiometry (SCP). Carbon paste screen-printed electrodes were modified with thin films of mercury and used to quantify sub-nanomolar concentrations of lead and cadmium and sub-micromolar concentrations of zinc in river water. Low detection limits of 0.06 nM for Pb(II) and 0.04 nM for Cd(II) were obtained by the standard addition method using a SCP deposition time of 180 s. The SCP results obtained for Pb(II) and Cd(II) agreed with those of inductively coupled plasma mass spectrometry (ICP-MS). The coupling of SCP with screen-printed electrodes opens up excellent potential for the development of onsite speciation of trace metals. Due to the low analysis throughput obtained for the standard addition method, we also propose a new, more rapid screening Cd(II) internal standard methodology to significantly increase the number of samples that can be analyzed per day.


2021 ◽  
Vol 11 (7) ◽  
pp. 2968
Author(s):  
Maximilian R. Marsiske ◽  
Christian Debus ◽  
Fulvio Di Lorenzo ◽  
Ellina Bernard ◽  
Sergey V. Churakov ◽  
...  

Incorporation of heavy metal ions in cement hydrates is of great interest for the storage and immobilization of toxic, hazardous, and radioactive wastes using cementitious matrix. Magnesium silicate hydrate (M-S-H) is a low pH alternative cementitious binder to commonly used Portland cement. Low pH cements have been considered as promising matrix for municipal and nuclear waste immobilization in the last decades. It is however crucial to assure that the incorporation of secondary ions is not detrimental for the formation of the hydration products. Herein, we investigate the early stages of formation of M-S-H from electrolyte solutions in presence of a wide range of metal cations (LiI, BaII, CsI, CrIII, FeIII, CoII, NiII, CuI, ZnII, PbII, AlIII). The final solid products obtained after 24 h have been characterized via powder X-ray diffraction (PXRD), attenuated total reflectance-Fourier transformed infrared spectroscopy (FTIR-ATR), elemental analysis via energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM). In all the experiments, the main precipitated phase after 24 h was confirmed to be M-S-H with a ratio (total metal/Si) close to one. The obtained M-S-H products showed strong immobilization capacity for the secondary metal cations and can incorporate up to 30% of the total metal content at the early stages of M-S-H formation without significantly delaying the nucleation of the M-S-H. It has been observed that presence of Cr, Co, and Fe in the solution is prolonging the growth period of M-S-H. This is related to a higher average secondary metal/total metal ratio in the precipitated material. Secondary phases that co-precipitate in some of the experiments (Fe, Pb, Ni, and Zn) were also effectively trapped within in the M-S-H matrix. Barium was the only element in which the formation of a secondary carbonate phase isolated from the M-S-H precipitates was detected.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sebastian Kuehr ◽  
Noemi Diehle ◽  
Ralf Kaegi ◽  
Christian Schlechtriem

Abstract Background Manufactured nanomaterials (MNMs) are released into the environment in increasing quantities. Consequently, MNMs also reach the aquatic environment, where they can interact with different organisms. Previous studies have already shown that filter-feeding bivalves can ingest nanomaterials from the surrounding water leading to higher concentration of the material. Furthermore, they have been shown to be vectors for environmental chemicals and pathogens to other organisms, as their feces/pseudofeces (F/pF) play a crucial role as a food source for other species. We exposed bivalves (Corbicula sp.) to MNMs and performed experiments to investigate the possible transport of MNMs by their feces to the benthic amphipod Hyalella azteca. Silver (Ag) and gold (Au) nanoparticles (NPs) as well as fluorescent polystyrene nanoparticles were used in this study. They allowed the investigation of the metal content of the bivalves’ feces and the amphipods feeding on it, as well as the localization of the fluorescent particles in the body of the animals. Results Examination of the feces by fluorescence microscope and determination of the total metal content by inductively coupled plasma mass spectrometry (ICP-MS) showed a high accumulation of the exposed MNMs in the F/pF. The examination of fecal matter, using transmission electron microscopy confirmed the nanoparticulate character of the metals in the examined fecal matter. After exposure of amphipods to the MNMs containing fecal matter, the fluorescent MNMs were localized in the animals gut. The chronic exposure of juvenile amphipods over 21 days to feces enriched with Au MNMs caused significant effects on the growth of the amphipods. The transfer of both metals (Ag and Au) from the fecal matter to the amphipods was confirmed after total metal measurements. Conclusion Probably, for the first time, it has been shown that when exposed to MNMs bivalves can transfer these particles to other benthic species. Transfer is via released F/pF upon which the benthic species feed and thus could ingest the particles. The high concentrations of MNMs in the fecal matter raises concerns about the potential accumulation and transfer of the materials and associated ecotoxicological effects in invertebrates such as benthic amphipods.


2021 ◽  
Author(s):  
Yahya R Tahboub ◽  
Abd Al-Majeed A. Al-Ghzawi ◽  
Shaker S Al-Zayadneh ◽  
Mohammad S AlGhotani

Abstract Honey is a common sweetener in the Jordanian diet with annual consumption of about one thousand tons, two-third of them are imported. It is believed that the elemental profile of honey is an indicator of safety and origin. In the literature, there is a lack of studies concerning levels of trace elements in honey in Jordan. A total 49 elements including 18 rare earth elements (REEs) were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) in mono-floral, and multi-floral imported honey samples, and multi-floral local samples. Regarding mono-floral samples, Black forest samples has the highest total metal content, while Acasia has the lowest total metal content. Local multi-floral honey has the largest Sr, and total REEs levels, while it has the lowest Mn levels. Very low levels of toxic elements were found in all samples, indicating the safety of honey in Jordan for human consumption. Results of this study showed that advanced statistical models are required to discriminate between multi-floral imported and local honey.


Author(s):  
V. N. Gushchin ◽  
D. A. Shpilev ◽  
D. L. Medvedev

The article presents the results of research determining the most effective technologies for increasing metal yield in the processing of aluminum-containing waste. In particular, peculiarities of the processes of melting aluminum alloys were analyzed using complex methods of furnace and off-furnace processing of charge material containing an increased amount of shovelling scrap and swarf. Studies on the impact of charge preparation and aluminum remelting technology were carried out in SAT-0,16 and IAT-0,4 furnaces on the АК12М2 alloy. Experiments proved that batchwise loading 20 kg of swarf briquette preheated to 300–400 °C into the SAT-0,16 furnace with the addition of flux (composition: NaCl – 50 %; KCl –35 %, Na3AlF6 – 15 %) in the amount of 3 % of total metal mass is the most efficient technology. This technology makes it possible to achieve a metal yield of about 94 %. The study of the remelting technology influence on IAT-0,4 furnace metal yield showed that the greatest effect can be obtained in case of furnace charge (95 kg swarf briquette) by batches of 2 kg into the 7 kg liquid bath with modifier flux (composition: NaCl – 62 %; KCl – 13 %, NaF – 25 %) added in the amount of 2 % from the total metal mass. This technology provides up to 93.5 % of metal yield. Data from 10 series of 5–9 melts were also analyzed with the comparison of metal yield results depending on the mass of briquetted swarf charged into the furnace. A histogram of the change in the porosity of AK12M2 and AK9 samples depending on the content of swarf in the charge (from 0 to 45 %) during remelting. It was found that an increase in the content of swarf in the charge, all other things being equal, leads to an increase in the average porosity score, which indicates the need for additional refining of such melts.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 309
Author(s):  
Philipp Baum ◽  
Bertram Kuch ◽  
Ulrich Dittmer

The parameter total suspended solids (TSS) is often used to evaluate the need for stormwater treatment or to assess the effectiveness of treatment measures. The purpose of this study is to analyze the value and the limitations of this approach using metals as an example. They are of major concern due to their accumulating effects in the environment. Data of a monitoring campaign at a stormwater treatment facility is evaluated. TSS, organic matter and the associated metals (Cr, Cu, Zn, Cd, and Pb) were analyzed in four different particle size fractions (<63 µm, 63–125 µm, 125–250 µm, and 250–2000 µm). While the highest event meant concentrations for all metals were found in the smallest fraction, a rather uniform particulate bound metal concentration (mass of metal per mass of particulate matter) over the first three particle size fractions was detected. Total metal loads correlated well with TSS even better with TSS < 63 µm. However, the removal efficiency in terms of the reduction of the total metal load was not reflected sufficiently by the TSS or TSS < 63 µm removal efficiency.


Environments ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 91
Author(s):  
Shamali De Silva ◽  
Trang Huynh ◽  
Andrew S. Ball ◽  
Demidu V. Indrapala ◽  
Suzie M. Reichman

Finding a reliable method to predict soil metal bioavailability in aged soil continues to be one of the most important problems in contaminated soil chemistry. To investigate the bioavailability of metals aged in soils, we used roadside soils that had accumulated metals from vehicle emissions over a range of years. We collected topsoil (0–10 cm) samples representing new-, medium- and old-aged roadside soils and control site soil. These soils were studied to compare the ability of the diffusive gradients in thin films technique (DGT), soil water extraction, CaCl2 extraction, total metal concentrations and optimised linear models to predict metal bioavailability in wheat plants. The response time for the release of metals and the effect on metal bioavailability in field aged soils was also studied. The DGT, and extractable metals such as CaCl2 extractable and soil solution metals in soil, were not well correlated with metal concentrations in wheat shoots. In comparison, the strongest relationships with concentrations in wheat shoots were found for Ni and Zn total metal concentrations in soil (e.g., Ni r = 0.750, p = 0.005 and Zn r = 0.833, p = 0.001); the correlations were still low, suggesting that total metal concentrations were also not a robust measure of bioavailability. Optimised linear models incorporating soil physiochemical properties and metal extracts together with road age as measure of exposure time, demonstrated a very strong relationship for Mn R2 = 0.936; Ni R2 = 0.936 and Zn R2 = 0.931. While all the models developed were dependent on total soil metal concentrations, models developed for Mn and Zn clearly demonstrated the effect of road age on metal bioavailability. Therefore, the optimised linear models developed have the potential for robustly predicting bioavailable metal concentrations in field soils where the metals have aged in situ. The intrinsic rate of release of metals increased for Mn (R2 = 0.617, p = 0.002) and decreased for Cd (R2 = 0.456, p = 0.096), Cu (R2 = 0.560, p = 0.083) and Zn (R2 =0.578, p = 0.072). Nickel did not show any relationship between dissociation time (Tc) and road age. Roadside soil pH was likely to be the key parameter controlling metal aging in roadside soil.


Sign in / Sign up

Export Citation Format

Share Document