Microcystin-leucine-arginine induces apical ectoplasmic specialization disassembly

Chemosphere ◽  
2021 ◽  
Vol 264 ◽  
pp. 128440
Author(s):  
Dihui Xu ◽  
Jing Wang ◽  
Yuhan Ma ◽  
Jie Ding ◽  
Xiaodong Han ◽  
...  
2013 ◽  
Vol 305 (6) ◽  
pp. E687-E699 ◽  
Author(s):  
Hin-Ting Wan ◽  
Dolores D. Mruk ◽  
Stephen Y. T. Li ◽  
Ka-Wai Mok ◽  
Will M. Lee ◽  
...  

During spermatogenesis, the molecular mechanism that confers spermatid adhesion to the Sertoli cell at the apical ectoplasmic specialization (apical ES), a testis-specific F-actin-rich adherens junction, in the rat testis remains elusive. Herein, the activated form of focal adhesion kinase (FAK), p-FAK-Tyr397, a component of the apical ES that was expressed predominantly and stage specifically in stage VII-early stage VIII tubules, was found to be a crucial apical ES regulator. Using an FAK-Y397E phosphomimetic mutant cloned in a mammalian expression vector for its transfection vs. FAK and vector alone in adult rat testes in vivo, its overexpression was found to cause defects in spermiation. These defects in spermiation were manifested by entrapment of spermatids in the seminiferous epithelium in late stage VIII–X tubules and were mediated by a disruption on the spatiotemporal expression and/or mislocalization of actin regulatory protein actin-related protein 3, which induces branched actin polymerization, epidermal growth factor receptor pathway substrate 8 (an actin barbed end capping and bundling protein), and palladin (an actin cross-linking and bundling protein). This thus perturbed changes of F-actin organization at the apical ES to facilitate spermiation, which also led to a concomitant alteration in the distribution and upregulation of adhesion proteins nectin-2 and nectin-3 at the apical ES. As such, nectin-2 and -3 remained at the apical ES to anchor step 19 spermatids on to the epithelium, delaying spermiation. These findings illustrate a mechanistic pathway mediated by p-FAK-Tyr397 that regulates spermatid adhesion at the apical ES in vivo.


1999 ◽  
Vol 10 (12) ◽  
pp. 4327-4339 ◽  
Author(s):  
Bin Chen ◽  
Anli Li ◽  
Dennis Wang ◽  
Min Wang ◽  
Lili Zheng ◽  
...  

The espins are actin-binding and -bundling proteins localized to parallel actin bundles. The 837-amino-acid “espin” of Sertoli cell–spermatid junctions (ectoplasmic specializations) and the 253-amino-acid “small espin” of brush border microvilli are splice isoforms that share a C-terminal 116-amino-acid actin-bundling module but contain different N termini. To investigate the roles of espin and its extended N terminus, we examined the actin-binding and -bundling properties of espin constructs and the stoichiometry and developmental accumulation of espin within the ectoplasmic specialization. An espin construct bound to F-actin with an approximately threefold higher affinity (K d = ∼70 nM) than small espin and was ∼2.5 times more efficient at forming bundles. The increased affinity appeared to be due to an additional actin-binding site in the N terminus of espin. This additional actin-binding site bound to F-actin with a K d of ∼1 μM, decorated actin stress fiber-like structures in transfected cells, and was mapped to a peptide between the two proline-rich peptides in the N terminus of espin. Espin was detected at ∼4–5 × 106 copies per ectoplasmic specialization, or ∼1 espin per 20 actin monomers and accumulated there coincident with the formation of parallel actin bundles during spermiogenesis. These results suggest that espin is a major actin-bundling protein of the Sertoli cell–spermatid ectoplasmic specialization.


2011 ◽  
Vol 1 (1) ◽  
pp. 73-86 ◽  
Author(s):  
Michelle K.Y. Siu ◽  
Ching Hang Wong ◽  
Weiliang Xia ◽  
Dolores D. Mruk ◽  
Will M. Lee ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Junya Suzuki ◽  
Sadaki Yokota

The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including PRKRA, TRBP, and Dicer. RISC localizes to P-bodies. The nuage of the spermatogenic cells has function similar to the P-bodies. We study whether PRKRA localizes to nuage of spermatogenic cells of rat and mouse. PRKRA localized to four types of nuage structures, including aggregates of 60–90 nm particles, irregularly-shaped perinuclear granules, and intermitochondrial cement of pachytene spermatocytes, and chromatoid bodies of round spermatids. In addition, PRKRA is associated with dense material surrounding tubulobulbar complexes and with the ectoplasmic specialization. The results suggest that PRKRA functions in the nuage as an element of RNA silencing system and plays unknown role in the ectoplasmic specialization and at the tubulobulbar complexes of Sertoli cells attaching the head of late spermatids.


2013 ◽  
Vol 304 (2) ◽  
pp. E145-E159 ◽  
Author(s):  
Xiang Xiao ◽  
Dolores D. Mruk ◽  
C. Yan Cheng

During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.


1991 ◽  
Vol 100 (3) ◽  
pp. 623-633
Author(s):  
D.F. Cameron ◽  
K.E. Muffly

A Sertoli-spermatid coculture model is described in which a large percentage (greater than 76%) of round spermatids remain viable for 48 h and bind to Sertoli cells. The effects of follicle-stimulating hormone (FSH) and testosterone on spermatid binding (expressed as the spermatid density; SD = the number of spermatids per unit area of Sertoli cell cytoplasm), ultrastructure of the Sertoli-spermatid junctional complex, and distribution in the Sertoli cell of junction-related F-actin and vinculin are described. Following 48 h of incubation, neither FSH alone nor testosterone alone affected spermatid binding to Sertoli cells beyond that observed in control cocultures. However, the combination of FSH and testosterone (FSH + testosterone) resulted in a significant increase in the density of spermatids bound to Sertoli cells. Junction-related structure of the Sertoli cell cytoskeleton between the Sertoli cell and the pre-step 8 spermatid was different than that observed between the Sertoli cell and the post-step 8 spermatid. The junction-related cytoskeletal modification of the Sertoli cell (JCMS) in the latter was similar in appearance to the well-described ‘Sertoli ectoplasmic specialization’ observed adjacent to post-step 8 spermatids in vivo. FSH + testosterone and FSH alone, but not testosterone alone, resulted in the peripheral distribution of actin and vinculin, which otherwise remained in stress fiber-like structures throughout the Sertoli cell. Results show that maximal spermatid binding to Sertoli cells in vitro requires FSH + testosterone and is associated with the peripheral distribution of actin and vinculin.


Sign in / Sign up

Export Citation Format

Share Document