blood testis barrier
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 86)

H-INDEX

55
(FIVE YEARS 6)

2022 ◽  
Vol 810 ◽  
pp. 152247
Author(s):  
Guo-Xiang Zhou ◽  
Wei-Bo Liu ◽  
Li-Min Dai ◽  
Hua-Long Zhu ◽  
Yong-Wei Xiong ◽  
...  

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Yoshiyuki Kubo ◽  
Sakiko Ishizuka ◽  
Takeru Ito ◽  
Daisuke Yoneyama ◽  
Shin-ichi Akanuma ◽  
...  

Taurine transport was investigated at the blood–testis barrier (BTB) formed by Sertoli cells. An integration plot analysis of mice showed the apparent influx permeability clearance of [3H]taurine (27.7 μL/(min·g testis)), which was much higher than that of a non-permeable paracellular marker, suggesting blood-to-testis transport of taurine, which may involve a facilitative taurine transport system at the BTB. A mouse Sertoli cell line, TM4 cells, showed temperature- and concentration-dependent [3H]taurine uptake with a Km of 13.5 μM, suggesting that the influx transport of taurine at the BTB involves a carrier-mediated process. [3H]Taurine uptake by TM4 cells was significantly reduced by the substrates of taurine transporter (TauT/SLC6A6), such as β-alanine, hypotaurine, γ-aminobutyric acid (GABA), and guanidinoacetic acid (GAA), with no significant effect shown by L-alanine, probenecid, and L-leucine. In addition, the concentration-dependent inhibition of [3H]taurine uptake revealed an IC50 of 378 μM for GABA. Protein expression of TauT in the testis, seminiferous tubules, and TM4 cells was confirmed by Western blot analysis and immunohistochemistry by means of anti-TauT antibodies, and knockdown of TauT showed significantly decreased [3H]taurine uptake by TM4 cells. These results suggest the involvement of TauT in the transport of taurine at the BTB.


2021 ◽  
Author(s):  
Bo Liu ◽  
Chao Liu ◽  
Binfang Ma ◽  
Ruidan Zhang ◽  
Zhiwei Zhao ◽  
...  

Abstract BackgroundThe blood-testis barrier (BTB) is essential to the microenvironment of spermatogenesis, and Sertoli cells provide the cellular basis for BTB construction. Numerous nuclear transcription factors have been identified to be vital for the proper functioning of Sertoli cells. PA1 has been reported to play important roles during diverse biological processes, yet its potential function in male reproduction is still unknown. ResultsHere, we show that PA1 was highly expressed in human and mouse testis and predominantly localized in the nuclei of Sertoli cells. Sertoli cell-specific Pa1 knockout resulted in an azoospermia-like phenotype in mice. The knockout of this gene led to multiple defects in spermatogenesis, such as the disorganization of the cytoskeleton during basal and apical ectoplasmic specialization and the disruption of the BTB. Further transcriptomic analysis, together with Cut-Tag results of PA1 in Sertoli cells, revealed that PA1 could affect the expression of a subset of genes that are essential for the normal function of Sertoli cells, including those genes associated with actin organization and cellular junctions such as Connexin43 (Cx43). We further demonstrated that the expression of Cx43 depended on the interaction between JUN, one of the AP-1 complex transcription factors, and PA1. ConclusionOverall, our findings reveal that PA1 is essential for the maintenance of BTB integrity in Sertoli cells and regulates BTB construction-related gene expression via transcription factors. Thus, this newly discovered mechanism in Sertoli cells provides a potential diagnostic or even therapeutic target for some individuals with azoospermia.


Author(s):  
Wenwen Liu ◽  
Lingfeng Zhang ◽  
Anning Gao ◽  
Muhammad Babar Khawar ◽  
Fengyi Gao ◽  
...  

Food-derived peptides with high arginine content have important applications in medicine and food industries, but their potential application in the treatment of oligoasthenospermia remains elusive. Here, we report that high-arginine peptides, such as Oyster peptides and Perilla purple peptides were able to promote spermatogenesis recovery in busulfan-treated mice. We found that both Opp and Ppp could increase sperm concentration and motility after busulfan-induced testicular damage in mice. Further research revealed that Opp and Ppp might promote spermatogonia proliferation, which improved blood-testis barrier recovery between Sertoli cells. Taken together, these high-arginine peptides might be used as a medication or therapeutic component of a diet prescription to improve the fertility of some oligoasthenospermia patients.


Aging ◽  
2021 ◽  
Author(s):  
Dong-Qi Ni ◽  
Dan-Dan Ma ◽  
Shuang-Li Hao ◽  
Wan-Xi Yang ◽  
Tamas Kovacs ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 875
Author(s):  
Jinjin She ◽  
Nannan Feng ◽  
Wanglong Zheng ◽  
Hao Zheng ◽  
Peirong Cai ◽  
...  

Zearalenone (ZEA), a common mycotoxin in grains and animal feeds, has been associated with male reproductive disorders. However, the potential toxicity mechanism of ZEA is not fully understood. In this study, in vivo and in vitro models were used to explore the effects of ZEA on the blood–testis barrier (BTB) and related molecular mechanisms. First, male BALB/C mice were administered ZEA orally (40 mg/kg·bw) for 5–7 d. Sperm motility, testicular morphology, and expressions of BTB junction proteins and autophagy-related proteins were evaluated. In addition, TM4 cells (mouse Sertoli cells line) were used to delineate the molecular mechanisms that mediate the effects of ZEA on BTB. Our results demonstrated that ZEA exposure induced severe testicular damage in histomorphology and an ultrastructural, time-dependent decrease in the expression of blood–testis barrier junction-related proteins, accompanied by an increase in the expression of autophagy-related proteins. Additionally, similar to the in vitro results, the dose-dependent treatment of ZEA increased the level of cytoplasmic Ca2+ and the levels of the autophagy markers LC3-II and p62, in conjunction with a decrease in the BTB junction proteins occludin, claudin-11, and Cx43, with the dislocation of the gap junction protein Cx43. Meanwhile, inhibition of autophagy by CQ and 3-MA or inhibition of cytoplasmic Ca2+ by BAPTA-AM was sufficient to reduce the effects of ZEA on the TM4 cell BTB. To summarize, this study emphasizes the role of Ca2+-mediated autophagy in ZEA-induced BTB destruction, which deepens our understanding of the molecular mechanism of ZEA-induced male reproductive disorders.


2021 ◽  
Vol 226 ◽  
pp. 112878
Author(s):  
Massimo Venditti ◽  
Mariem Ben Rhouma ◽  
Maria Zelinda Romano ◽  
Imed Messaoudi ◽  
Russel J. Reiter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document