Aerosol optical properties and its type classification based on multiyear joint observation campaign in north China plain megalopolis

Chemosphere ◽  
2020 ◽  
pp. 128560
Author(s):  
Yu Zheng ◽  
Huizheng Che ◽  
Xiangao Xia ◽  
Yaqiang Wang ◽  
Leiku Yang ◽  
...  
2011 ◽  
Vol 11 (12) ◽  
pp. 5959-5973 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
A. Nowak ◽  
T. Müller ◽  
S. Pfeifer ◽  
...  

Abstract. The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (ω), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm−1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm−1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of $σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R>0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data.


2011 ◽  
Vol 11 (3) ◽  
pp. 9567-9605 ◽  
Author(s):  
N. Ma ◽  
C. S. Zhao ◽  
A. Nowak ◽  
T. Müller ◽  
S. Pfeifer ◽  
...  

Abstract. The largest uncertainty in the estimation of radiative forcings on climate stems from atmospheric aerosols. In winter and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties including scattering coefficient (σsp), hemispheric back scattering coefficient (σbsp), absorption coefficient (σap, as well as single scattering albedo (ω) are presented. The characteristics of diurnal and seasonal variations are analyzed together with the meteorological and satellite data. The mean values of σsp, 550 nm of the dry aerosol in winter and summer are 280 ± 253 and 379 ± 251 Mm−1, respectively. The average σap for the two periods are respectively 47 ± 38 and 43 ± 27 Mm−1. The mean values of ω are 0.83 ± 0.05 and 0.87 ± 0.05 for winter and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional polluted aerosol of the North China Plain. Pronounced diurnal cycle of σsp, σap and ω are found, mainly influenced by the evolution of boundary layer and accumulation of local emissions during night-time. Regional transport of pollutants from southwest in the NCP is significant both in winter and summer, while high values of σsp and σap correlate with calm winds in winter, which indicating the significant contribution of local emissions. An optical closure experiment is conducted to better understand uncertainties of the measurements. Good correlations (R>0.98) are found between values measured by nephelometer and values calculated with a modified Mie model. Monte Carlo simulations show an uncertainty of about 30% for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with measured values, indicating a stable performance of instruments and thus a reliable aerosol optical data.


2018 ◽  
Author(s):  
Fei Wang ◽  
Zhanqing Li ◽  
Xinrong Ren ◽  
Qi Jiang ◽  
Hao He ◽  
...  

Abstract. Vertical distributions of aerosol optical properties derived from measurements made during 11 aircraft flights over the North China Plain (NCP) in May–June 2016 during the Air Chemistry Research In Asia (ARIAs) were analyzed. Aerosol optical data from in situ aircraft measurements shows good correlation with ground-based measurements. The regional variability of aerosol optical profiles such as aerosol scattering and backscattering, absorption, extinction, single scattering albedo (SSA), and the Ångström exponent (α) are for the first time thoroughly characterized over the NCP. The SSA at 550 nm showed a regional mean value of 0.85 ± 0.02 with moderate to strong absorption and the α ranged from 0.49 to 2.53 (median 1.53) indicating both mineral dust and accumulation mode aerosols. Most of the aerosol particles were located in the lowest 2 km of the atmosphere. We describe three typical planetary boundary layer (PBL) scenarios and associated transport pathways as well as the correlation between aerosol scattering coefficients and relative humidity (RH). Aerosol scattering coefficients decreased slowly with height in the clean PBL condition, but decreased sharply above the PBL under polluted conditions, which showed a strong correlation (R2 ≥ 0.78) with ambient RH. Back-trajectory analysis shows that clean air masses generally originated from the distant north-western part of China while most of the polluted air masses were from the heavily polluted interior and coastal areas near the campaign area.


2018 ◽  
Vol 18 (12) ◽  
pp. 8995-9010 ◽  
Author(s):  
Fei Wang ◽  
Zhanqing Li ◽  
Xinrong Ren ◽  
Qi Jiang ◽  
Hao He ◽  
...  

Abstract. Vertical distributions of aerosol optical properties derived from measurements made during 11 aircraft flights over the North China Plain (NCP) in May–June 2016 during the Air Chemistry Research In Asia (ARIAs) were analyzed. Aerosol optical data from in situ aircraft measurements show good correlation with ground-based measurements. The regional variability of aerosol optical profiles such as aerosol scattering and backscattering, absorption, extinction, single scattering albedo (SSA), and the Ångström exponent (α) are thoroughly characterized for the first time over the NCP. The SSA at 550 nm showed a regional mean value of 0.85 ± 0.02 with moderate to strong absorption and the α ranged from 0.49 to 2.53 (median 1.53), indicating both mineral dust and accumulation-mode aerosols. Most of the aerosol particles were located in the lowest 2 km of the atmosphere. We describe three typical planetary boundary layer (PBL) scenarios and associated transport pathways as well as the correlation between aerosol scattering coefficients and relative humidity (RH). Aerosol scattering coefficients decreased slowly with height in the clean PBL condition, but decreased sharply above the PBL under polluted conditions, which showed a strong correlation (R2 ≥ 0.78) with ambient RH. Back-trajectory analysis shows that clean air masses generally originated from the distant northwestern part of China, while most of the polluted air masses were from the heavily polluted interior and coastal areas near the campaign region.


Atmosphere ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Ioana Elisabeta Popovici ◽  
Zhaoze Deng ◽  
Philippe Goloub ◽  
Xiangao Xia ◽  
Hongbin Chen ◽  
...  

We present the mapping at fine spatial scale of aerosol optical properties using a mobile laboratory equipped with LIDAR (Light Detection And Ranging), sun photometer and in situ instruments for performing on-road measurements. The mobile campaign was conducted from 9 May to 19 May 2017 and had the main objective of mapping the distribution of pollutants in the Beijing and North China Plain (NCP) region. The highest AOD (Aerosol Optical Depth) at 440 nm of 1.34 and 1.9 were recorded during two heavy pollution episodes on 18 May and 19 May 2017, respectively. The lowest Planetary Boundary Layer (PBL) heights (0.5–1.5 km) were recorded during the heavy pollution events, correlating with the highest AOD and southern winds. The transport of desert dust from the Gobi Desert was captured during the mobile measurements, impacting Beijing during 9–13 May 2017. Exploring the NCP outside Beijing provided datasets for regions with scarce ground measurements and allowed the mapping of high aerosol concentrations when passing polluted cities in the NCP (Baoding, Tianjin and Tangshan) and along the Binhai New Area. For the first time, we provide mass concentration profiles from the synergy of LIDAR, sun photometer and in situ measurements. The case study along the Binhai New Area revealed mean extinction coefficients of 0.14 ± 0.10 km−1 at 532 nm and a mass concentration of 80 ± 62 μg/m3 in the PBL (<2 km). The highest extinction (0.56 km−1) and mass concentrations (404 μg/m3) were found in the industrial Binhai New Area. The PM10 and PM2.5 fractions of the total mass concentration profiles were separated using the columnar size distribution, derived from the sun photometer measurements. This study offers unique mobile datasets of the aerosol optical properties in the NCP for future applications, such as satellite validation and air quality studies.


2019 ◽  
Vol 53 (21) ◽  
pp. 12389-12397 ◽  
Author(s):  
Qiyuan Wang ◽  
Jianhuai Ye ◽  
Yichen Wang ◽  
Ting Zhang ◽  
Weikang Ran ◽  
...  

2015 ◽  
Vol 15 (10) ◽  
pp. 5761-5772 ◽  
Author(s):  
Y. Kuang ◽  
C. S. Zhao ◽  
J. C. Tao ◽  
N. Ma

Abstract. In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity (RH) is the dominant factor which determines the diurnal pattern of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage data sets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARE at the TOA.


Sign in / Sign up

Export Citation Format

Share Document