local emissions
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 60)

H-INDEX

19
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Katherine R. Travis ◽  
James H. Crawford ◽  
Gao Chen ◽  
Carolyn E. Jordan ◽  
Benjamin A. Nault ◽  
...  

Abstract. High levels of fine particulate matter (PM2.5) pollution in East Asia often exceed local air quality standards. Observations from the Korea United States-Air Quality (KORUS-AQ) field campaign in May and June 2016 showed that development of extreme pollution (haze) occurred through a combination of long-range transport and favorable meteorological conditions that enhanced local production of PM2.5. Atmospheric models often have difficulty simulating PM2.5 chemical composition during haze, which is of concern for the development of successful control measures. We use observations from KORUS-AQ to examine the ability of the GEOS-Chem chemical transport model to simulate PM2.5 composition throughout the campaign and identify the mechanisms driving the pollution event. In the surface level, the model underestimates campaign average sulfate aerosol by −64 % but overestimates nitrate aerosol by 36 %. The largest underestimate in sulfate occurs during the pollution event in conditions of high relative humidity, where models typically struggle to generate the high concentrations due to missing heterogeneous chemistry in aerosol liquid water in the polluted boundary layer. Hourly surface observations show that the model nitrate bias is driven by an overestimation of the nighttime peak. In the model, nitrate formation is limited by the supply of nitric acid, which is biased by +100 % against aircraft observations. We hypothesize that this is due to a missing sink, which we implement here as a factor of five increase in dry deposition. We show that the resulting increased deposition velocity is consistent with observations of total nitrate as a function of photochemical age. The model does not account for factors such as the urban heat island effect or the heterogeneity of the built-up urban landscape resulting in insufficient model turbulence and surface area over the study area that likely results in insufficient dry deposition. Other species such as NH3 could be similarly affected but were not measured during the campaign. Nighttime production of nitrate is driven by NO2 hydrolysis in the model, while observations show that unexpectedly elevated nighttime ozone (not present in the model) should result in N2O5 hydrolysis as the primary pathway. The model is unable to represent nighttime ozone due to an overly rapid collapse of the afternoon mixed layer and excessive titration by NO. We attribute this to missing nighttime heating driving deeper nocturnal mixing that would be expected to occur in a city like Seoul. This urban heating is not considered in air quality models run at large enough scales to treat both local chemistry and long-range transport. Key model failures in simulating nitrate, mainly overestimated daytime nitric acid, incorrect representation of nighttime chemistry, and an overly shallow and insufficiently turbulent nighttime mixed layer, exacerbate the model’s inability to simulate the buildup of PM2.5 during haze pollution. To address the underestimate in sulfate most evident during the haze event, heterogeneous aerosol uptake of SO2 is added to the model which previously only considered aqueous production of sulfate from SO2 in cloud water. Implementing a simple parameterization of this chemistry improves the model abundance of sulfate but degrades the SO2 simulation implying that emissions are underestimated. We find that improving model simulations of sulfate has direct relevance to determining local vs. transboundary contributions to PM2.5. During the haze pollution event, the inclusion of heterogeneous aerosol uptake of SO2 decreases the fraction of PM2.5 attributable to long-range transport from 66 % to 54 %. Locally-produced sulfate increased from 1 % to 46 % of locally-produced PM2.5, implying that local emissions controls would have a larger effect than previously thought. However, this additional uptake of SO2 is coupled to the model nitrate prediction which affects the aerosol liquid water abundance and chemistry driving sulfate-nitrate-ammonium partitioning. An additional simulation of the haze pollution with heterogeneous uptake of SO2 to aerosol and simple improvements to the model nitrate simulation results in 30 % less sulfate due to 40 % less nitrate and aerosol water, and results in an underestimate of sulfate during the haze event. Future studies need to better consider the impact of model physical processes such as dry deposition and boundary layer mixing on the simulation of nitrate and the effect of improved nitrate simulations on the overall simulation of secondary inorganic aerosol (sulfate+nitrate+ammonium) in East Asia. Foreign emissions are rapidly changing, increasing the need to understand the impact of local emissions on PM2.5 in South Korea to ensure continued air quality improvements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Duanyang Liu ◽  
Wenlian Yan ◽  
Junlong Qian ◽  
Mei Liu ◽  
Zida Wang ◽  
...  

The Jianghuai area is an “important” region not only for its local pollutant accumulation but the belt for pollutant transportation between North China and the Yangtze River Delta during the winter half of the year (often from October to next February). In this study, a movable boundary layer conceptual model for the Jianghuai area in the winter half of the year is established based on the analyses of characteristics of atmospheric circulations and boundary layer dynamic conditions. This conceptual model can well explain the causes of air quality change and frequent fog-haze episodes. Variations of the intensity and range of the cold and warm fronts in the Jianghuai area in the winter half of the year lead to form a movable boundary in this area. When the southerly wind is strong, or affected by strong cold air mass, the air quality in the Jianghuai area may be excellent with a low air pollution index; Two atmospheric circulations provide favorable conditions for the fog-haze formation and maintenance in Jianghuai area: 1) When the shallow weak cold air mass is below the deep moist warm air mass, a stable temperature inversion occurs. The pollutants are transported to the Jianghuai area by the weak cold air mass, and local emissions also accumulate. As a result, a severe air pollution episode appears. 2) When the northerly cold air mass is as intense as the southerly moist warm air mass, the pollutants transported from North China as well as local emissions will continuously accumulate in the study area, which may lead to more severe air pollution. This conceptual model can help us analyze atmospheric diffusion capacity, and benefit the forecast and early warning of airflow stagnation area and fog-haze episode.


2021 ◽  
Vol 264 ◽  
pp. 118712
Author(s):  
Ville-Veikko Paunu ◽  
Niko Karvosenoja ◽  
David Segersson ◽  
Susana López-Aparicio ◽  
Ole-Kenneth Nielsen ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1441
Author(s):  
Muhammad Amin ◽  
Rahmi Mulia Putri ◽  
Rizki Andre Handika ◽  
Aulia Ullah ◽  
Fadjar Goembira ◽  
...  

Size-segregated particulate matter (PM) including the PM0.1 fraction, particles ≤ 0.1 µm, was monitored during the rainy and dry seasons at three different cities in Sumatra island, Indonesia in 2018. In order to identify possible emission sources, carbonaceous components in the particles collected by a cascade air sampler that is capable of collecting PM0.1 particles were analyzed by applying a thermal/optical reflectance (IMPROVE-TOR) protocol. The PM0.1 levels in the Jambi and Pekanbaru areas were similar to those in large cities in East Asia, such as Bangkok and Hanoi. During the rainy season, local emissions in the form of vehicle combustion were the main sources of PM. The influence of peatland fires in the dry season was more significant in cities that are located on the east coast of Sumatra island because of the larger number of hotspots and air mass trajectories along the coast. A clear increase in the carbonaceous profiles as OC, TC, and OC/EC ratios in the dry season from the rainy season was observed, particularly in fine fractions such as PM0.5–1. In both seasons, EC vs. OC/EC correlations and soot-EC/TC ratios showed that the PM0.1 fraction in Sumatra island was heavily influenced by vehicle emissions, while the effect of biomass burning was more sensitive with respect to the PM0.5–1 fraction, particularly in Jambi and Pekanbaru sites during the dry season.


2021 ◽  
Vol 21 (20) ◽  
pp. 15431-15445
Author(s):  
Lili Ren ◽  
Yang Yang ◽  
Hailong Wang ◽  
Pinya Wang ◽  
Lei Chen ◽  
...  

Abstract. Due to the coronavirus disease 2019 (COVID-19) pandemic, human activities and industrial productions were strictly restricted during January–March 2020 in China. Despite the fact that anthropogenic aerosol emissions largely decreased, haze events still occurred. Characterization of aerosol transport pathways and attribution of aerosol sources from specific regions are beneficial to air quality and pandemic control strategies. This study establishes source–receptor relationships in various regions covering all of China during the COVID-19 outbreak based on the Community Atmosphere Model version 5 with Explicit Aerosol Source Tagging (CAM5-EAST). Our analysis shows that PM2.5 burden over the North China Plain between 30 January and 19 February is mostly contributed by local emissions (40 %–66 %). For other regions in China, PM2.5 burden is largely contributed from nonlocal sources. During the most polluted days of the COVID-19 outbreak, local emissions within the North China Plain and eastern China contributed 66 % and 87 % to the increase in surface PM2.5 concentrations, respectively. This is associated with the anomalous mid-tropospheric high pressure at the location of the climatological East Asia trough and the consequently weakened winds in the lower troposphere, leading to the local aerosol accumulation. The emissions outside China, especially those from South Asia and Southeast Asia, contribute over 50 % to the increase in PM2.5 concentration in southwestern China through transboundary transport during the most polluted day. As the reduction in emissions in the near future is desirable, aerosols from long-range transport and unfavorable meteorological conditions are increasingly important to regional air quality and need to be taken into account in clean-air plans.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1137
Author(s):  
Juan J. Henao ◽  
Angela M. Rendón ◽  
K. Santiago Hernández ◽  
Paola A. Giraldo-Ramirez ◽  
Vanessa Robledo ◽  
...  

Governments’ responses to the COVID-19 pandemic provide a unique opportunity to study the effects of restricted socioeconomic activity on air quality. Here, we study the changes in air pollution levels during the lockdown in Medellín and its metropolitan area, Colombia, for periods with and without enhanced regional fire activity, considering the effects of meteorology using random forest and multiple linear regression methods. The lockdown measures, which reduced mean traffic volume by 70% compared to 2016–2019, resulted in reductions for PM2.5 (50–63%), PM10 (59–64%), NO (75–76%), NO2 (43–47%), and CO (40–47%), while O3 concentration increased by 19–22%. In contrast, when fire activity was high, the effects of the lockdown on air quality were shadowed by the long-range transport of biomass burning emissions, increasing fine particulate matter and ozone. This study shows that healthier levels are achievable through significant efforts from decision-makers and society. The results highlight the need to develop integral measures that do not only consider reductions in the local emissions from transportation and industry, but also the role of fire activity in the region, as well as the difficulties of achieving reductions in ozone from measures that are effective at reducing primary pollutants.


2021 ◽  
Vol 21 (17) ◽  
pp. 12949-12963
Author(s):  
Hong Ren ◽  
Wei Hu ◽  
Lianfang Wei ◽  
Siyao Yue ◽  
Jian Zhao ◽  
...  

Abstract. Secondary organic aerosol (SOA) plays a significant role in atmospheric chemistry. However, little is known about the vertical profiles of SOA in the urban boundary layer (UBL). This knowledge gap constrains the SOA simulation in chemical transport models. Here, the aerosol samples were synchronously collected at 8, 120, and 260 m based on a 325 m meteorological tower in Beijing from 15 August to 10 September 2015. Strict emission controls were implemented during this period for the 2015 China Victory Day parade. Here, we observed that the total concentration of biogenic SOA tracers increased with height. The fraction of SOA from isoprene oxidation increased with height, whereas the fractions of SOA from monoterpenes and sesquiterpenes decreased, and 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of anthropogenic SOA from toluene oxidation, also increased with height. The complicated vertical profiles of SOA tracers highlighted the need to characterize SOA within the UBL. The mass concentration of estimated secondary organic carbon (SOC) ranged from 341 to 673 ng C m−3. The increase in the estimated SOC fractions from isoprene and toluene with height was found to be more related to regional transport, whereas the decrease in the estimated SOC from monoterpenes and sesquiterpene with height was more subject to local emissions. Emission controls during the parade reduced SOC by 4 %–35 %, with toluene SOC decreasing more than the other SOC. This study demonstrates that vertical distributions of SOA within the UBL are complex, and the vertical profiles of SOA concentrations and sources should be considered in field and modeling studies in the future.


2021 ◽  
Vol 13 (16) ◽  
pp. 3326
Author(s):  
Zhuang Wang ◽  
Cheng Liu ◽  
Yunsheng Dong ◽  
Qihou Hu ◽  
Ting Liu ◽  
...  

The polarization–Raman Lidar combined sun photometer is a powerful method for separating dust and urban haze backscatter, extinction, and mass concentrations. The observation was performed in Beijing during the 2019 National Day parade, the particle depolarization ratio at 532 nm and Lidar ratio at 355 nm are 0.13 ± 0.05 and 52 ± 9 sr, respectively. It is the typical value of a mixture of dust and urban haze. Here we quantify the contributions of cross-regional transported natural dust and urban haze mass concentrations to Beijing’s air quality. There is a significant correlation between urban haze mass concentrations and surface PM2.5 (R = 0.74, p < 0.01). The contributions of local emissions to air pollution during the 2019 National Day parade were insignificant, mainly affected by regional transport, including urban haze in North China plain and Guanzhong Plain (Hebei, Tianjin, Shandong, and Shanxi), and dust aerosol in Mongolia regions and Xinjiang. Moreover, the trans-regional transmission of natural dust dominated the air pollution during the 2019 National Day parade, with a relative contribution to particulate matter mass concentrations exceeding 74% below 4 km. Our results highlight that controlling anthropogenic emissions over regional scales and focusing on the effects of natural dust is crucial and effective to improve Beijing’s air quality.


Sign in / Sign up

Export Citation Format

Share Document