Bacteria tolerant to colistin in coastal marine environment: detection, microbiome diversity and antibiotic resistance genes' repertoire

Chemosphere ◽  
2021 ◽  
pp. 130945
Author(s):  
Ivica Šamanić ◽  
Hrvoje Kalinić ◽  
Željana Fredotović ◽  
Mia Dželalija ◽  
Ana-Marija Bungur ◽  
...  
2018 ◽  
Author(s):  
TK Dunivin ◽  
J Choi ◽  
AC Howe ◽  
A Shade

AbstractPlasmids harbor transferable genes that contribute to the functional repertoire of microbial communities, yet their contributions to metagenomes are often overlooked. Environmental plasmids have the potential to spread antibiotic resistance to clinical microbial strains. In soils, high microbiome diversity and high variability in plasmid characteristics present a challenge for studying plasmids. To improve understanding of soil plasmids, we present RefSoil+, a database containing plasmid sequences from 922 soil microorganisms. Soil plasmids were relatively larger than other described plasmids, which is a trait associated with plasmid mobility. There was no relationship between chromosome size and plasmid size or number, suggesting that these genomic traits are independent in soil. Soil-associated plasmids, but not chromosomes, had fewer antibiotic resistance genes than other microorganisms. These data suggest that soils may offer limited opportunity for plasmid-mediated transfer of described antibiotic resistance genes. RefSoil+ can serve as a baseline for the diversity, composition, and host-associations of plasmid-borne functional genes in soil, a utility that will be enhanced as the database expands. Our study improves understanding of soil plasmids and provides a resource for assessing the dynamics of the genes that they carry, especially genes conferring antibiotic resistances.ImportanceSoil-associated plasmids have the potential to transfer antibiotic resistance genes from environmental to clinical microbial strains, which is a public health concern. A specific resource is needed to aggregate knowledge of soil plasmid characteristics so that the content, host-associations, and dynamics of antibiotic resistance genes can be assessed and then tracked between the environment and the clinic. Here, we present RefSoil+, a database of soil-associated plasmids. RefSoil+ presents a contemporary snapshot of antibiotic resistance genes in soil that can serve as a reference as novel plasmids and transferred antibiotic resistances are discovered. Our study broadens our understanding of plasmids in soil and provides a community resource for investigating clinic-environment dynamics of important plasmid-associated genes, including antibiotic resistance genes.


2016 ◽  
Vol 1 (2) ◽  
pp. 22 ◽  
Author(s):  
Navindra Kumari Palanisamy ◽  
Parasakthi Navaratnam ◽  
Shamala Devi Sekaran

Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.


Sign in / Sign up

Export Citation Format

Share Document