antimicrobial resistance genes
Recently Published Documents


TOTAL DOCUMENTS

1028
(FIVE YEARS 716)

H-INDEX

47
(FIVE YEARS 12)

Author(s):  
Priyanka Jain ◽  
Rajlakshmi Viswanathan ◽  
Gourab Halder ◽  
Sulagna Basu ◽  
Shanta Dutta

We report draft whole-genome sequences of two multidrug-resistant Salmonella enterica serovar Senftenberg sequence type 14 strains resistant to ciprofloxacin, ceftriaxone, and/or azithromycin, which were isolated from neonatal stool and goat meat in Kolkata, India. The genome characteristics, as well as the antimicrobial resistance genes, plasmid types, and integrons, are presented in this report.


2022 ◽  
Author(s):  
Maura Fiona Judge ◽  
Adrienn Gréta Tóth ◽  
Sára Ágnes Nagy ◽  
Márton Papp ◽  
Norbert Solymosi

Antimicrobial resistance (AMR) is one of the foremost threats facing the treatment of infectious diseases worldwide. Recent studies have highlighted the potential for ntimicrobial resistance genes (ARGs) in fermented foods to contribute to AMR via horizontal gene transfer (HGT). The focus of our study was investigating the ARG content (resistome) and mobility potential of the ARGs (mobilome) of bacterial strains commonly used in probiotic products, namely yoghurt and kefir. We performed metagenomic analyses on freely available data sets (n=584) originating from various kefir and yoghurt strains using next generation sequencing (NGS) in order to gain an insight into the ARG diversity, frequency and mobility. Our study shows that kefir and yoghurt products carry diverse and significant amounts of ARGs and that these genes may often be associated with iMGEs or plasmids, conferring mobility. Certain bacteria species such as Bifidobacterium animalis and Streptococcus thermophilus were found to have higher ARG content. Overall, our results support the hypothesis that ARGs are present in fermented foods, namely yoghurt and kefir, and have the potential to contribute to AMR.


2022 ◽  
Author(s):  
Hannah-Marie Martiny ◽  
Patrick Munk ◽  
Christian Brinch ◽  
Judit Szarvas ◽  
Frank Aarestrup ◽  
...  

Abstract Since the initial discovery of a mobilized colistin resistance gene (mcr-1), several other variants have been reported, some of which might have circulated a while before being discovered. Metagenomic data provides an opportunity to re-analyze available older data to understand the evolutionary history of recently discovered antimicrobial resistance genes (ARGs). Here, we present a large-scale metagenomic study of 442 Tbp of sequencing reads from 214,095 samples to identify the host and geographical distribution and genomic context of nine mcr gene variants (mcr-1 to mcr-9). Our results show that the dissemination of each variant is not uniform. Instead, the source and location play a role in the spread. Despite the very diverse distribution, the genomic background of the mcr genes remains unchanged as the same mobile genetic elements and plasmid replicons occur. This work emphasizes the importance of sharing genomic data for surveillance of ARGs in our fight against antimicrobial resistance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Carlos Ratia ◽  
Melany Sánchez ◽  
Sara Soto

Escherichia coli is a well-characterized bacterium highly prevalent in the human intestinal tract and the cause of many important infections. The aim of this study was to characterize 376 extraintestinal pathogenic E. coli strains collected from four hospitals in Catalonia (Spain) between 2016 and 2017 in terms of antimicrobial resistance, siderophore production, phylogroup classification, and the presence of selected virulence and antimicrobial resistance genes. In addition, the association between these characteristics and the ability to form biofilms was also analyzed. The strains studied were classified into four groups according to their biofilm formation ability: non-biofilm formers (15.7%), weak (23.1%), moderate (35.6%), and strong biofilm formers (25.6%). The strains were highly resistant to ciprofloxacin (48.7%), trimethoprim-sulfamethoxazole (47.9%), and ampicillin (38%), showing a correlation between higher resistance to ciprofloxacin and lower biofilm production. Seventy-three strains (19.4%) were ESBL-producers. However, no relationship between the presence of ESBL and biofilm formation was found. The virulence factor genes fimH (92%), pgaA (84.6%), and irp1 (77.1%) were the most prevalent in all the studied strains. A statistically significant correlation was found between biofilm formation and the presence of iroN, papA, fimH, sfa, cnf, hlyA, iutA, and colibactin-encoding genes clbA, clbB, clbN, and clbQ. Interestingly, a high prevalence of colibactin-encoding genes (19.9%) was observed. Colibactin is a virulence factor, which interferes with the eukaryotic cell cycle and has been associated with colorectal cancer in humans. Most colibactin-encoding E. coli isolates belonged to phylogroup B2, exhibited low antimicrobial resistance but moderate or high biofilm-forming ability, and were significantly associated with most of the virulence factor genes tested. Additionally, the analysis of their clonal relatedness by PFGE showed 48 different clusters, indicating a high clonal diversity among the colibactin-positive strains. Several studies have correlated the pathogenicity of E. coli and the presence of virulence factor genes; however, colibactin and its relationship to biofilm formation have been scarcely investigated. The increasing prevalence of colibactin in E. coli and other Enterobacteriaceae and the recently described correlation with biofilm formation, makes colibactin a promising therapeutic target to prevent biofilm formation and its associated adverse effects.


Author(s):  
Haiyan Long ◽  
Ya Hu ◽  
Yu Feng ◽  
Zhiyong Zong

Klebsiella oxytoca complex comprises nine closely-related species causing human infections. We curated genomes labeled Klebsiella (n=14,256) in GenBank and identified 588 belonging to the complex, which were examined for precise species, sequence types, K- and O-antigen types, virulence and antimicrobial resistance genes. The complex and Klebsiella pneumoniae share many K- and O-antigen types. Of the complex, K. oxytoca and Klebsiella michiganensis appear to carry more virulence genes and be more commonly associated with human infections.


2022 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Antonio Lozano-León ◽  
Carlos García-Omil ◽  
Rafael R. Rodríguez-Souto ◽  
Alexandre Lamas ◽  
Alejandro Garrido-Maestu

Salmonella spp. and antimicrobial resistant microorganisms are two of the most important health issues worldwide. In the present study, strains naturally isolated from mussels harvested in Galicia (one of the main production areas in the world), were genetically characterized attending to the presence of virulence and antimicrobial resistance genes. Additionally, the antimicrobial profile was also determined phenotypically. Strains presenting several virulence genes were isolated but lacked all the antimicrobial resistance genes analyzed. The fact that some of these strains presented multidrug resistance, highlighted the possibility of bearing different genes than those analyzed, or resistance based on completely different mechanisms. The current study highlights the importance of constant surveillance in order to improve the safety of foods.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jolein Gyonne Elise Laumen ◽  
Christophe Van Dijck ◽  
Saïd Abdellati ◽  
Irith De Baetselier ◽  
Gabriela Serrano ◽  
...  

AbstractNon-pathogenic Neisseria are a reservoir of antimicrobial resistance genes for pathogenic Neisseria meningitidis and Neisseria gonorrhoeae. Men who have sex with men (MSM) are at risk of co-colonization with resistant non-pathogenic and pathogenic Neisseria. We assessed if the antimicrobial susceptibility of non-pathogenic Neisseria among MSM differs from a general population and if antimicrobial exposure impacts susceptibility. We recruited 96 participants at our center in Belgium: 32 employees, 32 MSM who did not use antibiotics in the previous 6 months, and 32 MSM who did. Oropharyngeal Neisseria were cultured and identified with MALDI-TOF–MS. Minimum inhibitory concentrations for azithromycin, ceftriaxone and ciprofloxacin were determined using E-tests® and compared between groups with non-parametric tests. Non-pathogenic Neisseria from employees as well as MSM were remarkably resistant. Those from MSM were significantly less susceptible than employees to azithromycin and ciprofloxacin (p < 0.0001, p < 0.001), but not ceftriaxone (p = 0.3). Susceptibility did not differ significantly according to recent antimicrobial exposure in MSM. Surveilling antimicrobial susceptibility of non-pathogenic Neisseria may be a sensitive way to assess impact of antimicrobial exposure in a population. The high levels of antimicrobial resistance in this survey indicate that novel resistance determinants may be readily available for future transfer from non-pathogenic to pathogenic Neisseria.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Zhou ◽  
Wenxiu Ai ◽  
Yanhua Cao ◽  
Yinjuan Guo ◽  
Xiaocui Wu ◽  
...  

The rise and global dissemination of extensively drug-resistant (XDR) bacteria are often related to plasmid-borne mobile antimicrobial resistance genes. Notably, isolates having multiple plasmids are often highly resistant to almost all the antibiotics available. In this study, we characterized an extensively drug-resistant Klebsiella pneumoniae 1678, which exhibited high-level resistance to almost all the available antibiotics. Through whole-genome sequencing (WGS), more than 20 resistant elements and 5 resistant plasmids were observed. Notably, the tigecycline resistance of K. pneumoniae 1678 was not related to the plasmid-borne tetA gene but associated with the overexpression of AcrAB and OqxAB efflux pumps, according to the susceptibility results of tetA-transformant and the related mRNA quantification of RND efflux pumps. Except for tigecycline resistance, three plasmids, mediating resistance to colistin, Fosfomycin, and ceftazidime–avibactam, respectively, were focused. Detailed comparative genetic analysis showed that all these plasmids belonged to dominated epidemic plasmids, and harbored completed conjugation systems. Results of conjugation assay indicated that these three plasmids not only could transfer to E. coli J53 with high conjugation frequencies, respectively, but also could co-transfer to E. coli J53 effectively, which was additionally confirmed by the S1-PFGE plasmids profile. Moreover, multiple insertion sequences (IS) and transposons (Tn) were also found surrounding the vital resistant genes, which may form several novel mechanisms involved in the resistant determinants’ mobilization. Overall, we characterized and reported the uncommon co-existence and co-transferring of FosA3-, NDM-5, and MCR-1-encoding plasmids in a K. pneumoniae isolate, which may increase the risk of spread of these resistant phenotypes and needing great concern.


2022 ◽  
pp. 112715
Author(s):  
Roosmarijn EC. Luiken ◽  
Dick JJ. Heederik ◽  
Peter Scherpenisse ◽  
Liese Van Gompel ◽  
Eri van Heijnsbergen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document