Hydrophilic graphene quantum dots as turn-off fluorescent nanoprobes for toxic heavy metal ions detection in aqueous media

Chemosphere ◽  
2021 ◽  
pp. 131019
Author(s):  
T. Anusuya ◽  
Veeresh Kumar ◽  
Vivek Kumar
Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2591 ◽  
Author(s):  
Nur Ain Asyiqin Anas ◽  
Yap Wing Fen ◽  
Nor Azah Yusof ◽  
Nur Alia Sheh Omar ◽  
Nur Syahira Md Ramdzan ◽  
...  

The modification of graphene quantum dots (GQDs) may drastically enhance their properties, therefore resulting in various related applications. This paper reported the preparation of novel cetyltrimethylammonium bromide/hydroxylated graphene quantum dots (CTAB/HGQDs) thin film using the spin coating technique. The properties of the thin film were then investigated and studied. The functional groups existing in CTAB/HGQDs thin film were confirmed by the Fourier transform infrared (FTIR) spectroscopy, while the atomic force microscope (AFM) displayed a homogenous surface of the thin film with an increase in surface roughness upon modification. Optical characterizations using UV-Vis absorption spectroscopy revealed a high absorption with an optical band gap of 4.162 eV. Additionally, the photoluminescence (PL) spectra illustrated the maximum emission peak of CTAB/HGQDs thin film at a wavelength of 444 nm. The sensing properties of the as-prepared CTAB/HGQDs thin film were studied using a surface plasmon resonance technique towards the detection of several heavy metal ions (HMIs) (Zn2+, Ni2+, and Fe3+). This technique generated significant results and showed that CTAB/HGQDs thin film has great potential for HMIs detection.


2019 ◽  
Vol 19 ◽  
pp. 100347 ◽  
Author(s):  
Mrinmoy Kumar Chini ◽  
Vishal Kumar ◽  
Ariba Javed ◽  
Soumitra Satapathi

2014 ◽  
Vol 19 (10) ◽  
pp. 101503 ◽  
Author(s):  
Margarita Vázquez-González ◽  
Carolina Carrillo-Carrion

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Suguna Perumal ◽  
Raji Atchudan ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Rajendran Suresh Babu ◽  
Petchimuthu Karpagavinayagam ◽  
...  

The growth of industry fulfills our necessity and promotes economic development. However, pollutants from such industries pollute water bodies which pose a high risk for living organisms. Thus, researchers have been urged to develop an efficient method to remove toxic heavy metal ions from water bodies. The adsorption method shows promising results for the removal of heavy metal ions and is easy to operate on a large scale, thus can be applied to practical applications. Numerous adsorbents were developed and reported, among them hydrogels, which attract great attention because of the reusability, ease of preparation, and handling. Hydrogels are generally prepared by the cross-linking of polymers that result in a three-dimensional structure, showing high porosity and high functionality. They are hydrophilic in nature because of the functional groups, and are non-toxic. Thus, this review provides various methods of hydrogel adsorbents preparation and summarizes recent progress in the use of hydrogel adsorbents for the removal of heavy metal ions. Further, the mechanism involved in the removal of heavy metal ions is briefly discussed. The most recent studies about the adsorption method for the treatment of heavy metal ions contaminated water are presented.


Sign in / Sign up

Export Citation Format

Share Document