Intriguing photophysical aspects of nitro substituted 2-(2′-hydroxyphenyl)benzothiazole (HBT) derivative: AIE in non-polar media?

2021 ◽  
Vol 541 ◽  
pp. 111032
Author(s):  
Arghyadeep Bhattacharyya ◽  
Nikhil Guchhait
Keyword(s):  
1990 ◽  
Vol 55 (8) ◽  
pp. 1891-1895 ◽  
Author(s):  
Peter Ertl

Twisting of the NMe2 group in p-N,N-dimethylaminobenzonitrile (DMABN) was investigated using AM1 semiempirical method with configuration interaction. Effect of polar media was considered by placing + and - charge centers ("sparkles") at appropriate places opposite the molecule. Optimized ground state geometry of DMABN is slightly twisted with the lowest vertical excited state of 1B character. As the polarity of media increases and/or the - NMe2 group twists, the symmetric 1A excited state having considerable charge separation becomes energetically favorable. Anomalous long-wavelength emission of DMABN comes from this state.


2004 ◽  
Vol 69 (5) ◽  
pp. 1137-1148 ◽  
Author(s):  
Gennady V. Oshovsky ◽  
Willem Verboom ◽  
David N. Reinhoudt

Ureidocavitand 1 and thioureidocavitand 2 bind in CH3CN organic anions such as acetate, propionate, butyrate, etc. with K values of 2-8 × 105 l mol-1 and 2-9 × 106 l mol-1, respectively, as was determined with isothermal microcalorimetry (ITC). Bringing together four (thio)urea binding sites on a molecular platform gives rise to about 2000 times higher binding constants, compared with those of the corresponding single binding sites. Glucose- and galactose-containing thioureidocavitands 5 and 6 bind acetate in 1:1 CH3CN/water with a K-value of 2.15 × 103 l mol-1.


1967 ◽  
Vol 15 (7) ◽  
pp. 375-380 ◽  
Author(s):  
WERNER STRAUS

Small phagosomes (micropinocytic vesicles and vacuoles) which had taken up injected horseradish peroxidase were identified by staining for peroxidase with benzidine and H2O2. Because of the small size of the granules and the possibility of artifacts, previously described procedures had to be modified in several respects. Prefixation of the tissue by perfusion at 37°C prevented artifacts of diffusion and adsorption of peroxidase. The blue product of the reaction of peroxidase with benzidine in the small phagosomes was preserved and fading to brown was prevented by cooling the tissue section to –10° to –15°C during its processing through polar media. The blue reaction product was stable as soon as the section was transferred to an apolar medium. Small phagosomes were visualized together with lysosomes and phago-lysosomes in the same cells by double staining for acid phosphatase and peroxidase in contrasting colors. The incubation for acid phosphatase was performed at 4°C since low temperature increased the stability of peroxidase in the acid medium. Factors which form the basis for other improvements of the procedure are discussed.


ChemInform ◽  
2010 ◽  
Vol 33 (34) ◽  
pp. no-no
Author(s):  
Vincent Lecomte ◽  
Elie Stephan ◽  
Gerard Jaouen
Keyword(s):  

2001 ◽  
pp. 2376-2377 ◽  
Author(s):  
Jerry L. Atwood ◽  
Leonard J. Barbour ◽  
Agoston Jerga

Author(s):  
Nicolas Moreno-Gómez ◽  
Edgar Vargas ◽  
Richard Buchner

For the progress of synthetic supramolecular chemistry in aqueous solution the design of host molecules soluble in this medium is essential. A possible route is the introduction of ionic residues,...


2018 ◽  
Vol 188 ◽  
pp. 01019 ◽  
Author(s):  
Evangelia K. Karaxi ◽  
Irene A. Kanellopoulou ◽  
Anna Karatza ◽  
Ioannis A. Kartsonakis ◽  
Costas A. Charitidis

Carbon-based nanomaterials are promising reinforcing elements for the development of “smart” self-sensing cementitious composites due to their exceptional mechanical and electrical properties. Significant research efforts have been committed on the synthesis of cement-based composite materials reinforced with carbonaceous nanostructures, covering every aspect of the production process (type of nanomaterial, mixing process, electrode type, measurement methods etc.). In this study, the aim is to develop a well-defined repeatable procedure for the fabrication as well as the evaluation of pressure-sensitive properties of intrinsically self-sensing cementitious composites incorporating carbon- based nanomaterials. Highly functionalized multi-walled carbon nanotubes with increased dispersibility in polar media were used in the development of advanced reinforced mortar specimens which increased their mechanical properties and provided repeatable pressure-sensitive properties.


2019 ◽  
Vol 12 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Martin Michalík ◽  
Ján Rimarčík ◽  
Vladimír Lukeš ◽  
Erik Klein

Abstract Very recently, a report on the antioxidant activity of flavonoids has appeared, where authors concluded that Hydrogen Atom Transfer mechanism represents the thermodynamically preferred mechanism in polar media (https://doi.org/10.1016/j.foodres.2018.11.018). Unfortunately, serious errors in the theoretical part of the paper led to incorrect conclusions. For six flavonols (galangin, kaempferol, quercetin, morin, myricetin, and fisetin), reaction enthalpies related to three mechanisms of the primary antioxidant action were computed. Based on the obtained results, the role of intramolecular hydrogen bonds (IHB) in the thermodynamics of the antioxidant effect is presented. Calculations and the role of solvation enthalpies of proton and electron in the determination of thermodynamically preferred mechanism is also briefly explained and discussed. The obtained results are in accordance with published works considering the Sequential Proton-Loss Electron-Transfer thermodynamically preferred reaction pathway.


Sign in / Sign up

Export Citation Format

Share Document