Design and conception of an innovative packing for separation column — Part III: Development of new hydrodynamic and mass transfer correlations for a wire-based lattice packing

Author(s):  
Beatrice Kawas ◽  
Benoit Mizzi ◽  
David Rouzineau ◽  
Michel Meyer
2013 ◽  
Vol 53 ◽  
pp. 143-152 ◽  
Author(s):  
Joaquin Menacho ◽  
Oriol Pou ◽  
Xavier Tomás ◽  
Eduard Serra ◽  
Rosa Nomen ◽  
...  

Author(s):  
Rosa H. Cha´vez ◽  
Javier de J. Guadarrama ◽  
Osbaldo Pe´rez ◽  
Abel Herna´ndez-Guerrero

In order to determine the dimension of a separation column, hydrodynamic and mass transfer models are necessary to evaluate the pressure drop and the height of the global mass transfer unit, respectively. Those parameters are a function of the cross sectional area of the column. The present work evaluates the dependency of the pressure drop and height of the global transfer unit with respect to the cross sectional area of the column, using an absorption column with high efficiency structured packing, in order to recover SO2 in the form of NaHSO3, as an example. An optimization was done applying Two Film model which is based on the number of global mass transfer units of both gas and liquid, involving the separation efficiency in terms of the height of a global transfer unit. Structured packing, geometrically heaped in a separation column, has been achieving wider acceptance in the separation processes due to their geometric characteristics that allow them to have greater efficiency in the separation processes. Three different structured packing were evaluated in this work. The results show how ININ packing is one of the packings does the best work having the highest separation efficiency because it has the lowest height of the global mass transfer unit and Mellapak packing has the largest capacity because it manages the largest liquid and gas flows. An analysis is done with respect to the pressure drop through the system for all packings considered, and a discussion is presented for each hydrodynamic and mass transfer parameter studied.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (1) ◽  
pp. 37-43 ◽  
Author(s):  
HANNU PAKKANEN ◽  
TEEMU PALOHEIMO ◽  
RAIMO ALÉN

The influence of various cooking parameters, such as effective alkali, cooking temperature, and cooking time on the formation of high molecular mass lignin-derived and low molecular mass carbohydrates-derived (aliphatic carboxylic acids) degradation products, mainly during the initial phase of softwood kraft pulping was studied. In addition, the mass transfer of all of these degradation products was clarified based on their concentrations in the cooking liquor inside and outside of the chips. The results indicated that the degradation of the major hemicellulose component, galactoglucomannan, typically was dependent on temperature, and the maximum degradation amount was about 60%. In addition, about 60 min at 284°F (140°C) was needed for leveling off the concentrations of the characteristic reaction products (3,4-dideoxy-pentonic and glucoisosaccharinic acids) between these cooking liquors. Compared with low molecular mass aliphatic acids, the mass transfer of soluble lignin fragments with much higher molecular masses was clearly slower.


Sign in / Sign up

Export Citation Format

Share Document