scholarly journals A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells

2010 ◽  
Vol 8 (3) ◽  
pp. 225-235 ◽  
Author(s):  
David L. Moyes ◽  
Manohursingh Runglall ◽  
Celia Murciano ◽  
Chengguo Shen ◽  
Deepa Nayar ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50518 ◽  
Author(s):  
Jeanette Wagener ◽  
Günther Weindl ◽  
Piet W. J. de Groot ◽  
Albert D. de Boer ◽  
Susanne Kaesler ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 707 ◽  
Author(s):  
Ana Regina Casaroto ◽  
Rafaela Alves da Silva ◽  
Samira Salmeron ◽  
Maria Lúcia Rubo de Rezende ◽  
Thiago José Dionísio ◽  
...  

The presence of Candida albicans in the biofilm underlying the dental prosthesis is related to denture stomatitis (DS), an inflammatory reaction of the oral mucosa. The oral epithelium, a component of the innate immune response, has the ability to react to fungal invasion. In this study, we evaluated the in vitro effect of viable C. albicans on the apoptosis, nitric oxide (NO) production, and β-defensin 2 (hBD-2) expression and production of human palate epithelial cells (HPECs). We further determined whether or not these effects were correlated with fungal invasion of epithelial cells. Interaction between HPEC primary culture and C. albicans was obtained through either direct or indirect cell–cell contact with a supernatant from a hyphal fungus. We found that the hyphae supernatants were sufficient to induce slight HPEC apoptosis, which occurred prior to the activation of the specific mechanisms of epithelial defense. The epithelial defense responses were found to occur via NO and antimicrobial peptide hBD-2 production only during direct contact between C. albicans and HPECs and coincided with the fungus’s intraepithelial invasion. However, although the hBD-2 levels remained constant in the HPEC supernatants over time, the NO release and hBD-2 gene expression were reduced at a later time (10 h), indicating that the epithelial defense capacity against the fungal invasion was not maintained in later phases. This aspect of the immune response was associated with increased epithelial invasion and apoptosis maintenance.


2015 ◽  
Vol 83 (7) ◽  
pp. 2614-2626 ◽  
Author(s):  
Rohitashw Kumar ◽  
Darpan Saraswat ◽  
Swetha Tati ◽  
Mira Edgerton

Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually withC. albicanscells overexpressing Sap6 (SAP6OE and a Δsap8strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6strain was attenuated. These hypervirulent strains had highly aggregative colony structurein vitroand higher secreted proteinase activity; however, the levels of proteinase activity ofC. albicansSaps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6OE and Δsap8cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increasedC. albicansadhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.


Author(s):  
Wanhai Qin ◽  
Xanthe Brands ◽  
Cornelis Veer ◽  
Alex F. Vos ◽  
Brendon P. Scicluna ◽  
...  

2021 ◽  
Vol 56 (4) ◽  
pp. 443-460.e11
Author(s):  
Effie E. Bastounis ◽  
Francisco Serrano-Alcalde ◽  
Prathima Radhakrishnan ◽  
Patrik Engström ◽  
María J. Gómez-Benito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document