Low-parachor solvents extraction and thermostated micro-thin-layer chromatography separation for fast screening and classification of spirulina from pharmaceutical formulations and food samples

2011 ◽  
Vol 1218 (33) ◽  
pp. 5694-5704 ◽  
Author(s):  
Paweł K. Zarzycki ◽  
Magdalena B. Zarzycka ◽  
Vicki L. Clifton ◽  
Jerzy Adamski ◽  
Bronisław K. Głód
2010 ◽  
Vol 93 (3) ◽  
pp. 778-782 ◽  
Author(s):  
Tatána Gondová ◽  
Iveta Petríková

Abstract A new and simple TLC-densitometry method has been developed for the simultaneous separation of the two noradrenergic and specific serotonergic antidepressants mirtazapine and mianserine and validated for their determination in commercially available tablets. The method used TLC plates precoated with silica gel 60F254 as the stationary phase, and the mobile phase consisted of hexaneisopropanol25 ammonia (70 + 25 + 5, v/v/v). Densitometric analysis was carried out in the absorbance mode at 280 nm. The method was validated in accordance with International Conference on Harmonization guidelines in terms of linearity, LOD, LOQ, precision, and accuracy. Calibration curves were linear (R2 > 0.9970) with respect to peak area in the concentration range of 5002500 and 5005000 ng/spot for mirtazapine and mianserine, respectively. The LODs were 20 and 35 ng/spot for mirtazapine and mianserine, respectively. The described method was successfully applied to the determination of mirtazapine and mianserine in their pharmaceutical formulations with recovery ranging from 99.83 to 101.20 of the labeled amount of the compounds. The proposed method can be used in routine QC of these drugs in pharmaceutical formulations.


2008 ◽  
Vol 46 (4) ◽  
pp. 799-803 ◽  
Author(s):  
Z. Urbán-Morlán ◽  
R. Castro-Ríos ◽  
A. Chávez-Montes ◽  
L.M. Melgoza-Contreras ◽  
E. Piñón-Segundo ◽  
...  

Author(s):  
J. P. Riley ◽  
T. R. S. Wilson

Thin-layer chromatography has been used for the rapid separation of microgram amounts of pigments of marine phytoplankton, both from cultures and from the sea. The separation is carried out on plates coated with silica gel; the chromatogram is developed with a solvent consisting of petroleum ether (b.p. 60–80°), ethyl acetate and diethylamine in the ratio 58:30:12 by volume. The separated individual pigments may be eluted from the plate and characterized by their absorption spectra. The pigments of the following phytoplankton have been examined: Dunaliella primolecta, Phaeodactylum tricornutum, Isochrysis galbana, Dicrateria inornata, Coccolithus huxleyi, and Peridinium trochoidium.IntroductionA knowledge of the component pigments of phytoplankton is of value in the systematic classification of these organisms and in the study of the mechanism of photosynthesis. Very little is known about the amounts of the lesser phyto-plankton pigments associated with the natural phytoplankton crop in the sea, but a considerable amount of work has been carried out on the measurement of chlorophylls a, b and c and of carotenoids for the estimation of the plant bio-mass in the sea. These determinations are usually carried out by modifications of the poly-chromatic spectrophotometric method originally described by Richards with Thompson (1952) and modified by Creitz & Richards (1955) (see also Parsons & Strickland, 1963). While these procedures give a satisfactory measure of chlorophylls a and b, their precision for chlorophyll c and carotenoids is poor; furthermore, no resolution of carotenes from xanthophylls can be attained; nor can any indication of the presence of unusual pigments be obtained.


Sign in / Sign up

Export Citation Format

Share Document