Micro electrochemical machining using electrostatic induction feeding method

CIRP Annals ◽  
2013 ◽  
Vol 62 (1) ◽  
pp. 175-178 ◽  
Author(s):  
Tomohiro Koyano ◽  
Masanori Kunieda
2012 ◽  
Vol 523-524 ◽  
pp. 305-309 ◽  
Author(s):  
Tomohiro Koyano ◽  
Masanori Kunieda

This paper describes micro electrochemical machining (ECM) using the electrostatic induction feeding method. In ECM, electrolytic dissolution can be localized in the area where the gap width is narrow by using pulse durations shorter than several tens of nano-seconds. With the electrostatic induction feeding method which has been developed for micro electrical discharge machining, the current pulse of such short durations can be obtained more easily compared with the conventional pulse generators. In this study, the influences of the pulse voltage of power supply and feeding capacitance on the machining current were investigated theoretically. It was found that the current pulse duration is nearly equal to the rise time and fall time regardless of the pulse-on time of the pulse voltage. Hence, ultra-short pulses can be obtained without a need to use an expensive pulse generator. Micro-hole drilling carried out in a sodium nitrate aqueous solution with current pulse duration of 30ns showed that significantly small side gap of 2μm could be obtained.


Procedia CIRP ◽  
2012 ◽  
Vol 1 ◽  
pp. 162-165 ◽  
Author(s):  
Yuna Yahagi ◽  
Tomohiro Koyano ◽  
Masanori Kunieda ◽  
Xiaodong Yang

2010 ◽  
Vol 447-448 ◽  
pp. 268-271 ◽  
Author(s):  
Yuna Yahagi ◽  
Tomohiro Koyano ◽  
Masanori Kunieda ◽  
Xiao Dong Yang

This paper describes machining characteristics of high spindle speed WEDG using the electrostatic induction feeding method. In this method, non-contact electric feeding allows the workpiece rod to be rotated at a high speed of up to 50000rpm. Since the temperature rise on the workpiece surface is low, the material removal rate was two times higher and the surface roughness was also improved compared to the normal RC discharge circuit where the rotational speed was 1000rpm at the highest due to contact electric feeding using a brush. Furthermore, micro rods thus prepared were used as tool electrodes to machine micro-holes with the same rotation speed of 50000rpm. It was found that smaller gaps and better straightness can be obtained due to the high flushing efficiency at the high spindle speed.


Sign in / Sign up

Export Citation Format

Share Document