scholarly journals Effect of creep feed grinding on surface integrity and fatigue life of Ni3Al based superalloy IC10

Author(s):  
Shuaiqi ZHANG ◽  
Zhongxue YANG ◽  
Ruisong JIANG ◽  
Qichao JIN ◽  
Qiang ZHANG ◽  
...  
2011 ◽  
Vol 320 ◽  
pp. 163-169
Author(s):  
R. Ashofteh ◽  
A. Rastkerdar ◽  
S. Kolahdouz ◽  
A. Daneshi

Creep-Feed Grinding(CFG) is one of the none-traditional machining in which form grinding to full depth is performed in limited number of passes. One of the most significant criteria which is taken into account to display valid machining parameters, is surface integrity. Surface integrity in CFG process is influenced by four main factors including surface roughness, superficial micro-crack, burning and changes in micro-hardness. According to prior investigations in CFG process, depth of cut plays an important role in surface integrity. In this study, the influence of cutting depth on workpiece surface integrity of cast nickel-based superalloy with alummina wheels, was investigated. During this study, a sample part was machined with variable depth of cut while the other parameters were Constant. After machining, surface roughness of each specimen was measured and in order to investigate existence and dimensional situation of surface micro-cracks, Chemical Etch + FPI and Thermal shock + FPI were performed. For determining micro-structural changes in ground specimens as a clarifier criteria in measuring the level of residual stress, a set of recrystallization processes were carried out on them and average grain size were measured. The results show, however, changing in depth of cut hasn't influenced on micro-cracks, quality of surface roughness has descended in terms of increasing the cutting depth.


Author(s):  
Marin Gostimirovic ◽  
Milenko Sekulic ◽  
Dragan Rodic

2021 ◽  
Author(s):  
JunChen Li ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Xiaofen Liu ◽  
Bo Huang ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


Sign in / Sign up

Export Citation Format

Share Document