High LDL levels are associated with increased lipoprotein-associated phospholipase A2 activity on nitric oxide synthesis and reactive oxygen species formation in human endothelial cells

2011 ◽  
Vol 44 (2-3) ◽  
pp. 171-177 ◽  
Author(s):  
Andrea Searle ◽  
Leonardo Gómez-Rosso ◽  
Tomás Meroño ◽  
Carlos Salomon ◽  
Daniel Durán-Sandoval ◽  
...  
2006 ◽  
Vol 344 (1) ◽  
pp. 200-205 ◽  
Author(s):  
Claudia Stielow ◽  
Rusan A. Catar ◽  
Gregor Muller ◽  
Kirstin Wingler ◽  
Peter Scheurer ◽  
...  

2010 ◽  
Vol 299 (5) ◽  
pp. H1419-H1427 ◽  
Author(s):  
Bo Shen ◽  
Lin Gao ◽  
Yi-Te Hsu ◽  
Grant Bledsoe ◽  
Makato Hagiwara ◽  
...  

Kallistatin is a regulator of vascular homeostasis capable of controlling a wide spectrum of biological actions in the cardiovascular and renal systems. We previously reported that kallistatin inhibited intracellular reactive oxygen species formation in cultured cardiac and renal cells. The present study was aimed to investigate the role and mechanisms of kallistatin in protection against oxidative stress-induced vascular injury and endothelial cell apoptosis. We found that kallistatin gene delivery significantly attenuated aortic superoxide formation and glomerular capillary loss in hypertensive DOCA-salt rats. In cultured endothelial cells, kallistatin suppressed TNF-α-induced cellular apoptosis, and the effect was blocked by the pharmacological inhibition of phosphatidylinositol 3-kinase and nitric oxide synthase (NOS) and by the knockdown of endothelial NOS (eNOS) expression. The transduction of endothelial cells with adenovirus expressing dominant-negative Akt abolished the protective effect of kallistatin on endothelial apoptosis and caspase activity. In addition, kallistatin inhibited TNF-α-induced reactive oxygen species formation and NADPH oxidase activity, and these effects were attenuated by phosphatidylinositol 3-kinase and NOS inhibition. Kallistatin also prevented the induction of Bim protein and mRNA expression by oxidative stress. Moreover, the downregulation of forkhead box O 1 (FOXO1) and Bim expression suppressed TNF-α-mediated endothelial cell death. Furthermore, the antiapoptotic actions of kallistatin were accompanied by Akt-mediated FOXO1 and eNOS phosphorylation, as well as increased NOS activity. These findings indicate a novel role of kallistatin in the protection against vascular injury and oxidative stress-induced endothelial apoptosis via the activation of Akt-dependent eNOS signaling.


Toxicology ◽  
2009 ◽  
Vol 256 (1-2) ◽  
pp. 83-91 ◽  
Author(s):  
Po-Ni Hsiao ◽  
Ming-Cheng Chang ◽  
Wen-Fang Cheng ◽  
Chi-An Chen ◽  
Han-Wei Lin ◽  
...  

2014 ◽  
Vol 542 ◽  
pp. 7-13 ◽  
Author(s):  
Dorota Dymkowska ◽  
Beata Drabarek ◽  
Paulina Podszywałow-Bartnicka ◽  
Joanna Szczepanowska ◽  
Krzysztof Zabłocki

2018 ◽  
Author(s):  
Loïc Léger ◽  
Aurélie Budin-Verneuil ◽  
Margherita Cacaci ◽  
Abdellah Benachour ◽  
Axel Hartke ◽  
...  

2003 ◽  
Vol 17 (5-6) ◽  
pp. 803-810 ◽  
Author(s):  
Jalal Pourahmad ◽  
Peter J O‘Brien ◽  
Farzaneh Jokar ◽  
Bahram Daraei

Sign in / Sign up

Export Citation Format

Share Document