T134. Quantifying dynamical interactions between neural assemblies

2018 ◽  
Vol 129 ◽  
pp. e54
Author(s):  
Joliene Brouwer ◽  
Michel J. van Putten
Keyword(s):  
1995 ◽  
Vol 5 (2) ◽  
pp. 83-102 ◽  
Author(s):  
Ron Sun
Keyword(s):  

2021 ◽  
Author(s):  
Thijs L van der Plas ◽  
Jérôme Tubiana ◽  
Guillaume Le Goc ◽  
Geoffrey Migault ◽  
Michael Kunst ◽  
...  

Patterns of endogenous activity in the brain reflect a stochastic exploration of the neuronal state space that is constrained by the underlying assembly organization of neurons. Yet it remains to be shown that this interplay between neurons and their assembly dynamics indeed suffices to generate whole-brain data statistics. Here we recorded the activity from ~40,000 neurons simultaneously in zebrafish larvae, and show that a data-driven network model of neuron-assembly interactions can accurately reproduce the mean activity and pairwise correlation statistics of their spontaneous activity. This model, the compositional Restricted Boltzmann Machine, unveils ~200 neural assemblies, which compose neurophysiological circuits and whose various combinations form successive brain states. From this, we mathematically derived an interregional functional connectivity matrix, which is conserved across individual animals and correlates well with structural connectivity. This novel, assembly-based generative model of brain-wide neural dynamics enables physiology-bound perturbation experiments in silico.


2014 ◽  
Vol 14 (10) ◽  
pp. 519-519
Author(s):  
S. Tremblay ◽  
F. Pieper ◽  
A. Sachs ◽  
J. Martinez-Trujillo

1999 ◽  
Vol 22 (2) ◽  
pp. 284-285
Author(s):  
Peter W. Culicover ◽  
Andrzej Nowak

To deal with syntactic structure, one needs to go beyond a simple model based on associative structures, and to adopt a dynamical systems perspective, where each phrase and sentence of a language is represented as a trajectory in a syntactic phase space. Neural assemblies could possibly be used to produce dynamics that in principle could handle syntax along these lines.


2006 ◽  
Vol 96 (2) ◽  
pp. 746-764 ◽  
Author(s):  
Jos J. Eggermont

Spiking activity was recorded from cat auditory cortex using multi-electrode arrays. Cross-correlograms were calculated for spikes recorded on separate microelectrodes. The pair-wise cross-correlation matrix was constructed for the peak values of the correlograms. Hierarchical clustering was performed on the cross-correlation matrix for six stimulus conditions. These were silence, three multi-tone stimulus ensembles with different spectral densities, low-pass amplitude-modulated noise, and Poisson-distributed click trains that each lasted 15 min. The resulting neuron clusters reflect patches in cortex of up to several mm2 in size that expand and contract in response to different stimuli. Cluster positions and size were very similar for spontaneous activity and multi-tone stimulus-evoked activity but differed between those conditions and the noise and click stimuli. Cluster size was significantly larger in posterior auditory field (PAF) compared with primary auditory cortex (AI), whereas the fraction of common spikes (within a 10-ms window) across all electrode activity participating in a cluster was significantly higher in AI compared with PAF. Clusters crossed area boundaries in <5% of the cases were simultaneous recording were made in AI and PAF. Clusters are therefore similar to but not synonymous with the traditional view of neural assemblies. Common-spike spectrotemporal receptive fields (STRFs) were obtained for common-spike activity and all-spike activity within a cluster. Common-spike STRFs had higher signal-to-noise ratio than all-spike STRFs and showed generally spectral and temporal sharpening. The coincident and noncoincident output of the clusters could potentially act in parallel and may serve different modes of stimulus coding.


2006 ◽  
Vol 29 (1) ◽  
pp. 82-84
Author(s):  
David M. W. Powers

van der Velde & de Kamps (dvV&dK) present a response to Jackendoff's four challenges in terms of a computational model. This commentary supports the position that neural assemblies mediated by recurrence and delay indeed have sufficient theoretical power to deal with all four challenges. However, we question the specifics of the model proposed, in terms of both neurophysiological plausibility and computational complexity.


Sign in / Sign up

Export Citation Format

Share Document