scholarly journals Compositional Restricted Boltzmann Machines Unveil the Brain-Wide Organization of Neural Assemblies

2021 ◽  
Author(s):  
Thijs L van der Plas ◽  
Jérôme Tubiana ◽  
Guillaume Le Goc ◽  
Geoffrey Migault ◽  
Michael Kunst ◽  
...  

Patterns of endogenous activity in the brain reflect a stochastic exploration of the neuronal state space that is constrained by the underlying assembly organization of neurons. Yet it remains to be shown that this interplay between neurons and their assembly dynamics indeed suffices to generate whole-brain data statistics. Here we recorded the activity from ~40,000 neurons simultaneously in zebrafish larvae, and show that a data-driven network model of neuron-assembly interactions can accurately reproduce the mean activity and pairwise correlation statistics of their spontaneous activity. This model, the compositional Restricted Boltzmann Machine, unveils ~200 neural assemblies, which compose neurophysiological circuits and whose various combinations form successive brain states. From this, we mathematically derived an interregional functional connectivity matrix, which is conserved across individual animals and correlates well with structural connectivity. This novel, assembly-based generative model of brain-wide neural dynamics enables physiology-bound perturbation experiments in silico.

Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


2019 ◽  
Author(s):  
Milou Straathof ◽  
Michel R.T. Sinke ◽  
Theresia J.M. Roelofs ◽  
Erwin L.A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in many disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional connectivity and macro-scale diffusion-based structural connectivity, but no correspondence between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Locally, strong functional connectivity was found in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Distinct structure-function relationships across the brain can explain the organization of networks and may underlie variations in the impact of structural damage on functional networks and behavior.


2020 ◽  
Author(s):  
Britni Crocker ◽  
Lauren Ostrowski ◽  
Ziv M. Williams ◽  
Darin D. Dougherty ◽  
Emad N. Eskandar ◽  
...  

AbstractBackgroundMeasuring connectivity in the human brain can involve innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation.Objective/HypothesisTo examine how different measures of connectivity correlate with one another, we compared ‘passive’ measures of connectivity during resting state conditions map to the more ‘active’ probing measures of connectivity with single pulse electrical stimulation (SPES).MethodsWe measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8).ResultsThe CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network.ConclusionsThese results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.


2019 ◽  
Vol 49 (8) ◽  
pp. 1078-1084 ◽  
Author(s):  
Vassiliki Mouka ◽  
Aikaterini Drougia ◽  
Vasileios G. Xydis ◽  
Loukas G. Astrakas ◽  
Anastasia K. Zikou ◽  
...  

Author(s):  
Pankush Kalgotra ◽  
Ramesh Sharda ◽  
Goutam Chakraborty

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 317 ◽  
Author(s):  
Chi-Wen Jao ◽  
Bing-Wen Soong ◽  
Tzu-Yun Wang ◽  
Hsiu-Mei Wu ◽  
Chia-Feng Lu ◽  
...  

In addition to cerebellar degeneration symptoms, patients with spinocerebellar ataxia type 3 (SCA3) exhibit extensive involvements with damage in the prefrontal cortex. A network model has been proposed for investigating the structural organization and functional mechanisms of clinical brain disorders. For neural degenerative diseases, a cortical feature-based structural connectivity network can locate cortical atrophied regions and indicate how their connectivity and functions may change. The brain network of SCA3 has been minimally explored. In this study, we investigated this network by enrolling 48 patients with SCA3 and 48 healthy subjects. A novel three-dimensional fractal dimension-based network was proposed to detect differences in network parameters between the groups. Copula correlations and modular analysis were then employed to categorize and construct the structural networks. Patients with SCA3 exhibited significant lateralized atrophy in the left supratentorial regions and significantly lower modularity values. Their cerebellar regions were dissociated from higher-level brain networks, and demonstrated decreased intra-modular connectivity in all lobes, but increased inter-modular connectivity in the frontal and parietal lobes. Our results suggest that the brain networks of patients with SCA3 may be reorganized in these regions, with the introduction of certain compensatory mechanisms in the cerebral cortex to minimize their cognitive impairment syndrome.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Milou Straathof ◽  
Michel R. T. Sinke ◽  
Theresia J. M. Roelofs ◽  
Erwin L. A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional and macro-scale diffusion-based structural connectivity, but no significant correlation between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Zooming in on individual connections, we found strong functional connectivity in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Although characteristics of the applied techniques may affect where structural and functional networks (dis)agree, distinct structure-function relationships across the brain could also have a biological basis.


2020 ◽  
Vol 117 (33) ◽  
pp. 20244-20253 ◽  
Author(s):  
Muhua Zheng ◽  
Antoine Allard ◽  
Patric Hagmann ◽  
Yasser Alemán-Gómez ◽  
M. Ángeles Serrano

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.


Sign in / Sign up

Export Citation Format

Share Document